Решение. (запишем комплексное число z в показательной форме: и рассмотрим данный предел при , так как если
(запишем комплексное число z в показательной форме: и рассмотрим данный предел при , так как если , тогда ) = =(по формуле Эйлера) .
При различных значениях получим различные значения предела, следовательно, он не существует.
Пример 9. Доказать непрерывность на всей комплексной плоскости функции .
Дата добавления: 2015-07-14; просмотров: 845;