Производная по направлению

 

Важной характеристикой скалярного поля является скорость изменения поля в заданном направлении.

Пусть задано скалярное поле, т.е. задана функция , и точка . Будем предполагать, что функция непрерывна и имеет непрерывные производные по своим аргументам в области .

Проведем из точки вектор , направляющие косинусы которого . На векторе , на расстоянии от его начала, рассмотрим точку . Тогда .

.

Учитывая, что , то полученное равенство будет иметь следующий вид:

.

Перейдем к пределу при .

Определение 4.3. Предел отношения при называется производной от функции в точке по направлению вектора и обозначается , т.е.

.

 

Итак, если функция дифференцируемая, то производная от функции в точке по направлению вектора находится по следующей формуле:

, (4.1)

где - направляющие косинусы вектора .

 

В случае функции двух переменных , т.е. когда поле плоское, формула (4.1) примет следующий вид:

, (4.2)

где .

 

Подобно тому, как частные производные характеризуют скорость изменения функции в направлении осей координат, так и производная по направлению будет являться скоростью измененияфункции в точке по направлению вектора .

 

Градиент

 

В каждой точке области , в которой задана функция , определим вектор, проекциями которого на оси координат являются значения частных производных в выбранной точке . Назовем этот вектор градиентом функции и обозначим его символами или (набла-оператор, записываемый в виде «вектора» с компонентами ).

Определение 4.4. Градиентом функции в точке называется вектор, проекции которого служат значения частных производных этой функции, т.е.

. (4.3)

 

Подчеркнем, что проекции градиента зависят от выбора точки и изменяются с изменением координат этой точки. Таким образом, каждой точке скалярного поля, определяемого функцией , соответствует определенный вектор – градиент этой функции. Отметим, что градиент линейной функции есть постоянный вектор .

Учитывая то, что скалярное произведение равно модулю одного вектора умноженному на проекцию другого вектора на направление первого, то можно еще сказать, что: производная функции по данному направлению равна проекции градиента функции на направление дифференцирования, т.е.

,

где j - угол между и направлением .

 

Установим некоторые свойства градиента.

Отсюда следует, что производная по направлению достигает наибольшего значения, когда , т.е. при .

1) Производная в данной точке по направлению вектора имеет наибольшее значение, если направление вектора совпадает с направлением градиента; это наибольшее значение производной равно .

Таким образом, направление градиента есть направление наискорейшего возрастания функции. В противоположном направлении функция будет быстрее всего убывать. - наибольшая скорость изменения функции в точке .

 

2) Производная по направлению вектора, перпендикулярного к вектору , равна нулю.

 

3) Градиент функции в каждой точке направлен по нормали к поверхности уровня скалярного поля, проходящего через эту точку.

 

Пример 4.2. Дана функция . Найти:

1) производную в точке по направлению вектора ;

2) производную в точке по направлению к точке ;

3) градиент функции в точке ;

4) наибольшую скорость возрастания функции в точке .

Решение. 1) Находим частные производные и значения частных производных в точке :

;

 

;

 

.

Находим направляющие косинусы вектора :

.

Тогда по формуле (4.1) получаем:

.

Так как , то в данном направлении функция возрастает.

 

2) Находим координаты и направляющие косинусы вектора :

;

.

Тогда по формуле (19.16) получаем:

.

Так как , то в данном направлении функция убывает.

 

3) Используя формулу (4.3) запишем градиент функции в точке :

.

 

4) Находим наибольшую скорость возрастания функции в точке :

.

,

 

 








Дата добавления: 2017-09-19; просмотров: 5064;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.