Теория нечетких множеств
Наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.
При изучении сложных систем, где человек играет существенную роль, действует так называемый принцип несовместимости [1]: для получения существенных выводов о поведении сложной системы необходимо отказаться от высоких стандартов точности и строгости, которые характерны для сравнительно простых систем, и привлекать к ее анализу подходы, которые являются приближенными по своей природе.
При попытке формализовать человеческие знания исследователи столкнулись с проблемой, затруднявшей использование традиционного математического аппарата для их описания. Существует целый класс описаний, оперирующих качественными характеристиками объектов (много, мало, сильный, очень и т. п.) Эти характеристики обычно размыты и не могут быть однозначно интерпретированы, однако содержат важную информацию (например, «Одним из возможных признаков гриппа является высокая температура»).
Категория нечеткости и связанные с ней модели и методы очень важны с мировоззренческой точки зрения, поскольку с их появлением стало возможно подвергать количественному анализу те явления, которые раньше либо могли быть учтены только на качественном уровне, либо требовали использования весьма грубых моделей.
Значительное продвижение в этом направлении сделано примерно 35 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работы легли в основу моделирования интеллектуальной деятельности человека и явились начальным толчком к развитию новой математической теории.
Что же предложил Заде? Во-первых, он расширил классическое понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0;1), а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy). Л.Заде определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.
Введя затем, понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л.Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.
Вот точка зрения Л.Заде: "Я считаю, что излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. В результате многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, оставались и остаются в стороне по той причине, что они не поддаются математической трактовке. Для того чтобы сказать что-либо существенное для проблем подобного рода, мы должны отказаться от наших требований точности и допустить результаты, которые являются несколько размытыми или неопределенными".
Математическая теория нечетких множеств позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров.
Нечеткая Логика - в основном многозадачная логика, которая позволяет определять промежуточные значения между стандартными оценками подобно Да/Нет, Истина/Ложь, Черное/Белое, и т.д. Понятия подобно "довольно теплый" или "довольно холодный" могут быть сформулированы математически и обработаны компьютерами. Таким образом, сделана попытка применить человекоподобное мышление в программировании компьютера.
В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с результатами, получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.
Дата добавления: 2017-06-02; просмотров: 1487;