Перетворення Лежандра

Рис. 8.9

Принцип Лагранжа-Дирихле

Для консервативної системи стійка, нестійка, байдужа рівновага мають місце відповідно:

min max const

Приклади. Теорема Кастільяно

,

.

, тобто при .

Теорема Клапейрона

Відповідні екстремальні значення функціоналів Лагранжа і Кастільяно співпадають.

Варіаційні рівняння функціоналів Лагранжа і Кастільяно утворюють так звану пару двоїстих задач варіаційного числення, коли попередні умови однієї задачі є природними умовами іншої і навпаки. Під природними умовами розуміються умови, яким задовольняють відповідні варіаційні рівняння.

За допомогою методу множників Лагранжа можна “поміняти місцями” додаткові і природні умови, тобто із функціонала Лагранжа отримати функціонал Кастільяно і навпаки. Таке перетворення у варіаційному численні має назву перетворення Фрідріхса. Зазначимо, що екстремальні значення функціоналів Лагранжа і Кастільяно, а також усіх функціоналів, які отримані за допомогою множників Лагранжа співпадають.


Лекція 9








Дата добавления: 2016-12-26; просмотров: 582;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.