Распределение напряжений в тонком вращающемся неравномерно нагретом диске постоянной толщины
Полагая h=const, из уравнения равновесия (4) получим

Применяя правило дифференцирования произведения, имеем


Уравнение равновесия (12) для диска постоянной толщины используем для исключения четвертого слагаемого в уравнении (9), что позволит легко его проинтегрировать. Для этого умножим (12) на 1+μ и сложим с (9):


В полученном уравнении разделим переменные и проинтегрируем, воспользовавшись правилом суммирования производных,


где 2A – постоянная интегрирования.
Уравнение равновесия в форме (12) содержит обе неизвестные величины σr и σθ. Исключим из него σθ, применив общее решение (13). С этой целью разделим (13) на r и сложим с (12):




В последнем уравнении разделим переменные и проинтегрируем


где B – постоянная интегрирования. Выразив из последнего соотношения σr, получим

Обозначим

Подставив введенные обозначения (15) в (14), окончательно получим общее решение для распределения радиальных напряжений в диске постоянной толщины:

Теперь из уравнения (13), учитывая (16), находим и σθ:


Обозначив,

окончательно получим общее решение для распределения окружных напряжений в диске постоянной толщины

Постоянные интегрирования A и B должны быть найдены из граничных условий (10) на периферии и расточке диска.
Вследствие линейности задачи полные напряжения в диске равны алгебраической сумме динамических и температурных напряжений, поэтому рассматривать их будем по отдельности.
Дата добавления: 2016-02-16; просмотров: 785;
