Линейные операции над векторами. Под линейными операциями над векторами понимают операции сложения векторов и умножение их на число.
Под линейными операциями над векторами понимают операции сложения векторов и умножение их на число.
Геометрическая интерпретация. Пусть и два произвольных вектора. Возьмем произвольную точку O и построим из нее вектор . От точки A отложим вектор . Вектор , соединяющий начало первого вектора с концом второго, называется суммой векторов и : (рис. IV.1).
Рис. IV.1
Это правило сложения векторов называется правилом треугольника. Аналогично происходит сложение нескольких векторов (рис IV.2):
Рис. IV.2
Под разностью векторов и понимается вектор . На практике вектора и откладывают из одной точки, концы соединяют и вектор имеет направление «к концу вектора ».
Отметим, что в параллелограмме (рис. IV.3), построенном на векторах и , одна направленная диагональ является суммой векторов и , а другая - разностью.
Рис. IV.3
Произведением вектора на скаляр (число) λ, , называется вектор , который имеет длину вектора , умноженную на λ, а направление совпадает с направлением вектора , если , и противоположно направлению вектора , если .
Линейные операции над векторами обладают следующими свойствами:
1) ; | 3) ; |
2) ; | 4) ; |
5) , . |
Эти свойства позволяют проводить преобразования над векторами так, как это делается в обычной алгебре: слагаемые менять местами, вводить скобки, группировать, выносить за скобки как скалярные, так и векторные общие множители.
Дата добавления: 2016-01-26; просмотров: 817;