Геометрическая интерпретация частных производных функции двух переменных
Пусть уравнение z=f(x,y) –это уравнение поверхности. Проведем плоскость x=const. L- линия пересечения поверхности с плоскостью x=const. При данном x на плоскости ХОУ возьмем точку М. На поверхности z=f(x,y) ей соответствует точка Р(x,y,z). Дадим переменному y приращение Тогда функция z получит приращение
Отношение равно тангенсу угла, образованного секущей RР с положительным направлением оси ОУ,
Итак, частная производная численно равна тангенсу угла
наклона касательной к кривой, получающейся в сечении поверхности z=f(x,y) плоскостью x=const.
Аналогично, частная производная численно равна тангенсу угла наклона касательной к кривой, получающейся в сечении поверхности z=f(x,y) плоскостью x=const.
Дата добавления: 2015-08-11; просмотров: 2367;