Астные производные.

Пусть z=f(x,y). Зафиксируем какую-либо точку (x,y), а затем, не меняя закрепленного значения аргумента y, придадим аргументу x приращение Тогда z получит приращение, которое называется частным приращением z по x и обозначается и определяется формулой

Аналогично, если x сохраняет постоянное значение, а y получает приращение , то z получает частное приращение z по y,

 

Определение. Частной производной по x от функции z=f(x,y) называется предел отношения частного приращения по x к приращению при стремлении к нулю, т.е.

Частная производная обозначается одним из символов.

Аналогично определяется частная производная по y:

.

Таким образом, частные производные функции двух переменных вычисляются по тем же правилам, что и производные функции одного переменного.

Пример.

1. Найти частные производные функции z=x2e x-2y.

Решение.

2. Z= . Решение:

3. Z= Решение:

.

 

Частные производные функции любого числа переменных определяются аналогично.








Дата добавления: 2015-08-11; просмотров: 836;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.