Доказательство. Обозначение: d|a – d делит a, – a делится на d.

Лекция №15-16

Теория делимости.

Определение.

Пусть a и d – целые числа. Говорят, что d делитель a, или что d делит a, или что a кратно d, или что a делится на d, если существует такое число c, что a = d ∙ c.

Обозначение: d|a – d делит a, a делится на d.

 

Пример 1.

Докажите, что если d|a, d|b, то d|(a+b) и d|(a-b).

Доказательство.

Так как d|a, то существует целое число такое что . Так как d|b, то существует целое число , такое что . Рассмотрим a+b= + =d( + )= , где – целое число. Итак, a+b= d· . Значит d|(a+b) (по определению). Аналогично доказывается, что d|(a-b).

 








Дата добавления: 2015-08-01; просмотров: 569;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.