Доказательство. Пусть ограничено сверху элементом , т.е

Пусть ограничено сверху элементом , т.е. . Рассмотрим множество . , т.к. . Тогда ограничено снизу любым элементом из , следовательно, по теореме 13, имеет наименьший элемент . Покажем, что элемент такой, что , является наибольшим в . Предположим, что , следовательно, . Последнее противоречит тому, что - наименьший в , а, значит, предположение неверно. Тогда такой, что . Таким образом, - наибольший в .

что и требовалось доказать.

 








Дата добавления: 2015-08-21; просмотров: 770;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.