Решение. z = x + iy, = x – iy. Подставим в уравнение окружности формулы (1) и (2): , :
z = x + iy, = x – iy. Подставим в уравнение окружности формулы (1) и (2): , :
,
,
,
.
Заменим , . Получим:
1) 2) . (*)
Заменим на и подставим в (*). Получим:
1) – прямая.
2) ( точка О).
Образом окружности при отображении будет прямая .
Для построения окружности, приведем ее уравнение к каноническому виду:
центр в точке , радиус – (рис. 26).
3. Дробно-линейная функция , ad–bc ≠ 0, a,b,c,d .
может быть приведена к виду где .
– аналитическая во всей расширенной плоскости Гаусса, кроме . Если принять, что , и углы между кривыми при переходе от точки к точке и наоборот равны, то отображение будет конформно во всей расширенной плоскости Гаусса.
Геометрический смысл отображения: параллельный перенос, инверсия с полюсом в точке , зеркальное отображение относительно прямой, проходящей через точку параллельно действительной оси, и линейное преобразование. Другими словами, представляется в виде композиции трех функций: линейной , простейшей дробно-линейной и снова линейной . Следовательно, также отображает окружность в окружность.
Замечание 1. Дробно-линейная функция вполне определяется заданием образов трех точек. Например, если , то
. (17)
Если одна из точек или является бесконечно удаленной, то в формуле все разности, содержащие эту точку, следует заменить единицами.
Замечание 2. Точки А и В, симметричные относительно прямой или окружности в плоскости (z), отображаются дробно-линейной функцией в точки Аۥ и Вۥ, симметричные относительно образа прямой или окружности в плоскости . Бесконечно удаленная точка считается симметричной центру окружности.
Замечание 3.Отображение , обратное к дробно-линейному, само является дробно-линейным, хотя и не совпадает с прямым отображением, т.е. не является инволюцией.
Пример 32. Найти дробно-линейное отображение, переводящее точки 1, i, i–1 в точки 0, 3i, 1+i.
Дата добавления: 2015-07-14; просмотров: 1314;