Тригонометрические и гиперболические функции
1)
.
Функция однолистна в полуполосе
и отображает эту полуполосу на плоскость
с разрезом
Склеивание листов римановой поверхности происходит отдельно по лучу
и по отрезку [–1,1].
2)
.
Функция сводится к
при помощи соотношения:
.
3)
,
.
Функции сводятся к
и
при помощи соотношений:
;
.
7. Функция Жуковского 
Функция аналитическая во всей плоскости Гаусса за исключением точек z1 =1, z2 = –1, z3 =0, так как
.
Функция конформна в расширенной плоскости, за исключением точек z1 =1, z2 = –1, z3 =0 и осуществляет конформное отображение как внешности, так и внутренности единичного круга плоскости (z) на плоскость
с разрезом по отрезку
Полная плоскость (z) отображается на двулистную риманову поверхность, склеенную крест-накрест по разрезам 
Обратная функция
– двузначна, причем каждая ветвь осуществляет отображение плоскости
с разрезом по
на внутренность или внешность единичного круга в плоскости (z).
Конформное отображение, осуществляемое функцией, было использовано Н.Е.Жуковским для решения задач обтекания крыла самолета.
Дата добавления: 2015-07-14; просмотров: 659;
