Первообразная функции
Основной задачей дифференциального исчисления является нахождение производной или дифференциала данной функции.
Интегральное счисление решает обратную задачу – нахождение самой функции по ее производной или дифференциалу.
Опр.: Функция называется первообразной функцией для функции на промежутке Х, если в каждой точке х этого промежутка
Например:
1) является первообразной для функции , т.к.
2. на промежутке для , т.е.
Исходя из геометрического смысла производной: – угловой коэффициент касательной к кривой в точке х
Значит, найти первообразную для – найти такую кривую , что угловой коэффициент касательной к ней в произвольной точке х равен значению заданной функции в этой точке
Следует заметить, что для заданной функции ее первообразная определена неоднозначно.
Например:
Функции , и вообще функции , где С – некоторое действительное число, являются первообразными для функции
В общем случае, если – некоторая первообразная для , то поскольку
функции вида , где С – произвольное число так же являются первообразными для .
Геометрически это означает, что если найдена одна кривая , удовлетворяющая условию , то сдвигая ее вдоль оси Оу, мы вновь получаем кривые, удовлетворяющие указанному условию (поскольку такой сдвиг не меняет углового коэффициента касательной).
Опр.: Совокупность всех первообразных для функции на промежутке Х называется неопределенным интегралом от функции .
Обозначение:
– знак интеграла
х – переменная интегрирования
– подинтегральная функция
– подинтегральное выражение
Пример:
1)
2)
Операция нахождения неопределенного интеграла от некоторой функции называется интегрирование функции (обратная к операции дифференцирования).
Дата добавления: 2017-09-19; просмотров: 868;