Равносильные уравнения. Теоремы о равносильности уравнений
Определение. Два уравнения f1(х) = g1(х) и f2(х) = g2(х) называются равносильными, если множества их корней совпадают.
Например, уравнения х2 - 9 = 0 и (2 х + 6)( х - 3) = 0 равносильны, так как оба имеют своими корнями числа 3 и -3. Равносильны и уравнения (3х + 1)-2 = х2- + 1 и х2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.
Определение. Замена уравнения равносильным ему уравнением называется равносильным преобразованием.
Выясним теперь, какие преобразования позволяют получать равносильные уравнения.
Теорема 1.Пусть уравнение f(х) и g(х)задано на множестве и h(x) - выражение, определенное на том же множестве. Тогда уравнения f(х) = g(х) (1)и f(х) + h(x) = g(х) + h(x) (2) равносильны.
Доказательство. Обозначим через Т1 - множество решений уравнения (1), а через Т2 - множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Чтобы убедиться в этом, необходимо показать, что любой корень из Т1 является корнем уравнения (2) и, наоборот, любой корень из Т2 является корнем уравнения (1).
Пусть число а - корень уравнения (1). Тогда a € Т1, и при подстановке в уравнение (1) обращает его в истинное числовое равенство f(a) = g(a), а выражение h(х) обращает в числовое выражение h(a), имеющее смысл на множестве X. Прибавим к обеим частям истинного равенства f(a) = g(a) числовое выражение h(a). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенство f(a) + h(a) = g(a) + h(a), которое свидетельствует о том, что число а является корнем уравнения (2).
Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т1 с T2.
Пусть теперь а - корень уравнения (2). Тогда а € T2 и при подстановке в уравнение (2) обращает его в истинное числовое равенство f(a) + h(a) = g(a) + h(a). Прибавим к обеим частям этого равенства числовое выражение -h(a), Получим истинное числовое равенство f(х) = g(х), которое свидетельствует о том, что число а - корень уравнения (1).
Итак, доказано, что каждый корень уравнения (2) является и корнем уравнения (1), т.е. T2 с Т1.
Так как Т1 с Т2 и Т2 с Т1, то по определению равных множеств Т1 = Т2, а значит, уравнения (1) и (2) равносильны.
Данную теорему можно сформулировать иначе: если к обеим частям уравнения с областью определения X прибавить одно и то же выражение с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.
Из этой теоремы вытекают следствия, которые используются при решении уравнений:
1.Если к обеим частям уравнения прибавить одно и то лее число, то получим уравнение, равносильное данному.
2. Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.
Теорема 2. Пусть уравнение f(х) = g(х) задано на множестве X и h(х) - выражение, которое определено на том же множестве и не обращается в нуль ни при каких значениях х из множества X. Тогда уравнения f(х) = g(х) и f(х) · h(x) = g(х) · h(x) равносильны.
Доказательство этой теоремы аналогично доказательству теоремы 1.
Теорему 2 можно сформулировать иначе: если обе части уравнения с областью определения X умножить на одно и то же выражение, которое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.
Из этой теоремы вытекает следствие: если обе части уравнения умножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному.
Дата добавления: 2016-05-11; просмотров: 2959;