Предельные признаки сходимости Даламбера и Коши
Теорема 5.1(признак сходимости Даламбера). Пусть дан числовой ряд
Предположим, что
.
Если d < 1, то ряд
сходится абсолютно. Если d > 1, то этот ряд расходится.
Доказательство. Пусть d < 1. Тогда найдется число ε > 0 такое, что q = d + ε < 1. Так как
, то для ε > 0 существует номер N такой, что при всех n ≥ N выполняется неравенство
. Отсюда
при всех n ≥ N. Тогда
, где n ≥ N . Значит,
,
,
................................
,
................................
Числовой ряд

сходится, так как является геометрической прогрессией со знаменателем q , где 0 < q < 1. Ряд

сходится, так как имеет сходящуюся мажоранту. Тогда сходится и ряд из модулей
,
так как сходится его остаток. Согласно теореме 4.1, исходный числовой ряд
сходится, причем абсолютно.
Пусть d > 1. Тогда найдется ε > 0 такое, что d − ε = q > 1. По условию
. Тогда для ε > 0 существует номер N такой, что при всех n ≥ N выполняется неравенство
< ε. Отсюда
при всех n ≥ N. Тогда
, где n ≥ N. Значит,
,
,
................................
,
................................
Так как q > 1, то последовательность {сn} является неограниченной. Значит, исходный числовой ряд
расходится по необходимому признаку сходимости.
Замечание.Если в условиях теоремы 5.1.
, то исходный ряд может как сходиться, так и расходиться. Например, ряд
расходится, а ряд
сходится. Однако
,
.
Пример. Рассмотрим числовой ряд
. Так как
,
то данный ряд сходится абсолютно по признаку Даламбера.
Теорема 5.2(предельный признак Коши). Пусть дан числовой ряд
Предположим, что
. Если k < 1, то ряд
сходится абсолютно. Если k > 1, то ряд расходится.
Доказательство.Пусть k < 1. Тогда существует число ε > 0 такое, что k + ε = q < 1. Так как
, то для ε > 0 найдется номер N такой, что
< ε при всех n
N. Отсюда
< k + ε = q при всех n ≥ N. Значит,
,
,
………....
Отсюда следует, что ряд
сходится, так как имеет сходящуюся мажоранту
, где 0 < q < 1. Тогда будет сходиться и ряд
. По теореме 4.1, исходный числовой ряд
сходится, причем абсолютно.
Пусть k > 1. Тогда найдется ε > 0 такое, что k − ε = q > 1. Так как
= k, то для числа ε > 0 существует номер N такой, что
< ε при всех n ≥ N. Тогда
> k − ε = q при всех n ≥ N. Отсюда
,
,
...................
Так как q > 1, то последовательность {сn} является неограниченной. Тогда ряд
расходится по необходимому признаку сходимости.
Пример.Исследуем на сходимость ряд
.
Так как
, то ряд сходится абсолютно.
Замечание.Если
, то ряд
может как сходиться, так и расходиться. В самом деле, гармонический ряд
расходится, а ряд
сходится. Однако
,
,
так как
= 1.
Задачи.
5.1. С помощью предельного признака Даламбера исследовать сходимость рядов:
а)
б)
в) 
г)
; д)
; е)
.
5.2. С помощью предельного признака Коши исследовать сходимость рядов:
а)
; б)
;
в)
; г)
;
д)
; е)
.
5.3. Исследовать сходимость рядов:
а)
;
б)
;
в)
;
г)
;
д)
.
5.4. Доказать сходимость ряда
, если:
а)
б)
.
Дата добавления: 2016-07-09; просмотров: 1590;
