ПОЖАРЫ И ВЗРЫВЫ НА КОРАБЛЯХ 8 страница

При рассмотрении отдельных пожароопасных факторов и методов борьбы с ними будем, по возможности, учитывать мероприятия всех трех указанных групп.

Пожары в машинно-котельных отделениях. Опыт показывает, что довольно частым видом аварий на кораблях ряда классов являются пожары в машинно-котельных отделениях.

Аварии по этим причинам происходили и до последнего времени происходят на кораблях различных флотов и классов (ЛКР «Ринаун» — 1927 г., ЭМ «Антон Шмидт» — 1940 г., MM T1 — 1943 г., КРТ «Ньюпорт-Ньюс» — 1956 г., АВ «Китти Хок» — 1973 г). В работе [26] указывается, что только в течение последних трех месяцев {115} 1940 г. и только на кораблях германского ВМФ произошло 60 пожаров вследствие самовозгорания смазочного масла и жидкого топлива. По другим данным, в период второй мировой войны на германских военных кораблях произошло несколько сот пожаров в машинно-котельных отделениях линкоров, крейсеров, эсминцев и кораблей других классов.

Пожары в машинных отделениях являлись следствием воспламенения смазочного масла (из подшипников главных и вспомогательных механизмов) при попадании его на горячие поверхности турбин или трубопроводов. В целях предотвращения этого рекомендовалось предусматривать такие конструкции механизмов, которые исключали бы возможность просачивания и разбрызгивания масла из подшипников, и применять тепловую изоляцию, не пропускающую масло, использовать негорючие защитные покрытия, которые предохраняли бы поверхности от распространения по ним огня. Краски должны обладать малой теплопроводностью, чтобы обеспечивать замедленную скорость распространения огня. Среди рекомендаций эксплуатационного характера указывалось, что личный состав машинных отделений должен систематически проверять и подтягивать уплотнения маслопроводов меха­низмов.

Более серьезными были происшествия в котельных отделениях. Отмечено немало аварий и катастроф, причинами которых послужили взрывы паровых котлов на кораблях. В большинстве случаев (около %) такие взрывы приводили к гибели кораблей, в остальных — они вызывали лишь повреждения (иногда серьезные), но корабли при этом оставались на плаву. Любопытно, что среди негибельных случаев взрывов котлов, которых было зарегистрировано 6, половина приходится на 20-е годы, а другая половина — на 70-е. ЭМ УРО «Голдсборо», эскортный эсминец «Бэзилоун» (оба США) и десантный корабль-док «Кандидо де Ласала» (Аргентина), на которых произошли взрывы паровых котлов (соответственно, в 1970, 1973 и 1974 гг.), были в результате этого сильно повреждены, хотя и сохранились на плаву.

Причиной взрыва котла обычно является перенапряжение его стенок, в результате чего нарушается их целостность. Это может быть следствием чрезмерного давления пара в котле (при выходе из строя предохранительных клапанов или манометров), понижения уровня воды в нем (по недосмотру личного состава), недостатков конструкции котла (из-за ошибок в расчетах, низкого качества {116} материалов, дефектов изготовления), неправильного обслуживания и содержания его. Как видно, имеются причины как конструктивного, так и эксплуатационного характера. Во избежание взрывов в котлах эти моменты должны учитываться в процессе проектирования, изготовления, испытания и эксплуатации котлов на кораблях.

В котельных отделениях много пожаров было вызвано воспламенением нефтетоплива. При этом часто происходили «трюмные пожары», когда в трюмах скапливалась вода и плававшие на ее поверхности остатки топлива воспламенялись, если они оказывались близко к горячим участкам котлов. Для исключения подобных пожаров, происходивших, как правило в результате упущений личного состава (редкая проверка и очистка трюмов), предписывалось держать трюмы котельных отделений сухими, систематически проверяя их состояние. Кроме того, рекомендовалось применять на кораблях маслоочистители трюмной воды.

Некоторые пожары имели своим источником горение сажи в дымовых трубах, которое происходило либо из-за употребления слишком жирной смеси котельного топлива, либо вследствие редкой и несвоевременной очистки дымоходов от сажи. В этих случаях достаточно было попадания искр на накопившуюся сажу, чтобы вызвать пожар. Подобные пожары можно исключить, проводя систематическую и тщательную очистку дымоходов котлов.

Пожары от воспламенения легких видов топлива. Значительно большие повреждения кораблей связаны с воздействием на них пожаров и взрывов, вызванных воспламенением легких видов топлива.

Так, например, на торпедных катерах и тральщиках, где применялись бензомоторы, происходили довольно частые пожары и взрывы вследствие воспламенения бензина и взрыва его паров. Нередко источником таких пожаров бывали неплотности в бензосистемах, из-за которых бензин растекался и, попадая на горячие поверхности механизмов и трубопроводов, загорался. Эти пожары и взрывы приводили к выходу из строя, а иногда и к гибели кораблей (германские ТКА и ТЩ). Они явились одной из основных причин перехода на боевых катерах и малых кораблях к дизельным моторам взамен бензиновых.

«Бензиновые» пожары и взрывы происходили на крейсерах в районах расположения бензоцистерн вследствие того, в частности, что цистерны оставлялись пустыми и не замещались водой (КР «Гориция», 1959 г.). Такие аварии приводили к местным повреждениям кораблей. {117}

Однако наиболее часто отмечались пожары и взрывы, связанные с возгоранием авиатоплива на авианосцах, происходившие в самых разнообразных условиях. Ряд пожаров и взрывов был связан с утечкой горючего из неисправных топливных цистерн и его воспламенением («Индомптебл», 1953 г.), другие — в результате неудовлетворительного состояния электрооборудования кораблей, особенно сети высокого напряжения («Рэнджер» и «Рэндолф», 1959 г.) Такие взрывы приводили к повреждениям кораблей и человеческим жертвам. Многие аварии имели место на полетных палубах при неудачных взлетах и посадках самолетов («Эссекс» — 1951 и 1959 гг., «Орискани»—1954 г., «Хэнкок»—1958 г.). Печально известными стали топливные пожарные катастрофы на «Форрестоле» (1967 г.) и «Энтерпрайзе» (1969 г.), которые также начинались с полетных палуб. В последних случаях пожары сопровождались взрывами бомб и ракет, что значительно усиливало эффект их разрушительного действия на корабли. Авиатопливные пожары происходили и в ангарах во время заправок самолетов при подготовке их к вылету («Уосп»— 1955 г., «Орискани»— 1966 г.). Бывали пожары и при приеме топлива на авианосцы («Франклин Д. Рузвельт» — 1966 г.). Крупный пожар на АВ «Констеллейшн» (1960 г.) также имел своим источником возгорание топлива на одной из палуб корабля.

Многие из авиатопливных пожаров и взрывов приводили к катастрофам крупнейшего масштаба, о чем говорилось выше. При детальном изучении обстоятельств аварий и катастроф, связанных с пожарами этого типа, было установлено, что в большинстве случаев они явились
результатом неправильных действий и упущений личного состава кораблей. Но были причины и конструктивного характера, особенно отмечалась недостаточность средств борьбы с пожарами.

Постоянный и значительный рост запасов авиатоплива на авианосцах вызывает в зарубежных флотах тревогу за их противопожарную безопасность и в дальнейшем.

В ВМС США и других стран применяется в настоящее время авиатопливо, менее опасное в пожарном отношении, чем бензин. Так, на авианосцах США вместо применявшегося ранее авиабензина с температурой вспышки 10° С используется более тяжелое авиатопливо марки JP-5, имеющее температуру вспышки 60° С.

Рис. 21. Принципиальная схема расположения на авианосце системы авиатоплива для реактивных двигателей:


1 — цистерна для хранения; 2 — насос; 3 — центробежный фильтр; 4 — расходная цистерна; 5 — к распределительной системе; 6 — фильтр-сепаратор Принципиальная схема расположения авиационного топлива для реактивных двигателей на авианосце дана на рис. 21. Частота пожаров на полетных палубах и в ангарах авианосцев, быстрота распространения огня по кораблю {119} и характер его разрушительного действия — все это диктовало

В противопожарных целях хранение на авианосцах бензина осуществлялось в «седловидных» цистернах, окруженных коффердамами с инертным газом (рис. 20). При {118} этом транспортировка авиабензина по кораблю производилась только в двойных трубопроводах с внешним заполнением инертным газом. Такая система была, например, принята на французских и американских авианосцах.

Рис. 20. Схема расположения седловидных цистерн авиабензина на авианосце: 1 — приемный трубопровод; 2 — насос; 3 — авиабензин; 4 — к распределительной системе; 5 — фильтр-сепаратор; 6 — внешняя

 

Хранение топлива для реактивных двигателей значительно проще. В этом случае ликвидированы коффердамы и отменено применявшееся ранее размещение топлива в цистернах, защищенных броней.

настоятельную необходимость принятия неотложных мер по усилению средств борьбы с пожарами на полетных палубах и в ангарах. И, действительно, такие меры были приняты, особенно в последние годы. Практическую эффективность этих мер покажет будущее, но масштабы выполненных и планируемых работ таковы, что они, по всей вероятности, соответствуют поставленной задаче повышения пожаробезопасности кораблей и прежде всего — авианосцев.

На организационную постановку дела было обращено первейшее внимание. И в конце 60-х годов при МТО ВМС США создали специальную группу с целью координации всех работ по разработке и использованию новых средств борьбы с пожарами. К выполнению работ привлекли крупные научно-исследовательские и промышленные организации и органы ВМС. Аналогичную группу организовали в авиации ВМС. Непосредственная разработка огнетушащих составов была возложена на военно-морскую научно-исследовательскую лабораторию (NRL), а руководства вопросами противопожарного оборудования поручено командованию МТО. Создание новых огнетушащих составов считалось одной из первоочередных задач.

Такие составы были созданы для нужд авиации ВМС США в начале 60-х годов. Они включали в себя пенообразователь «легкая вода» (light water) и порошок бикарбонат калия (purple К). Их и было решено использовать на кораблях и, в первую очередь, на авианосцах. «Легкая вода» представляет собой жидкую смесь плотностью 1010 кг/м3 поверхностно-активного вещества синтетического фтористого углерода. Этот пенообразователь одинаково хорошо смешивается как с пресной, так и с забортной водой. Последнее обстоятельство весьма важно для кораблей, имеющих ограниченные запасы пресной воды. Было установлено, что из 6% раствора смеси при использовании обычных пенных стволов вырабатывается пена с кратностью расширения 7—11. Она имеет важное свойство—распространяется по поверхности горящего топлива» создавая тонкую, но прочную и когезионную (плотно-сцепленную) пленку, препятствующую выходу горючих газов из очага пожара, что значительно повышает пламегасящий эффект и делает его устойчивым.

Опыты показали, что эффективность тушения горящего топлива (в частности, типа JP-5) у нового пенообразователя («легкой воды») в 2—5 раз выше, чем у прежнего {120} протеинового, а у бикарбоната калия —в 3—4 раза больше, чем у применявшегося ранее порошка на натриевой основе и. чем у углекислоты, которая также широко применяется для пожаротушения на кораблях. При этом было найдено, что при высокой эффективности этих пламегасящих веществ они являются и более экономичными, так как требуют относительно меньшего расхода материалов на единицу площади пожара, чем прежние составы. Способ тушения горящего топлива этими составами заключается в том, что сначала для снижения температуры и подавления пламени создается пламегасящее облако из порошка бикарбоната калия, а затем очаг пожара покрывают пеной, на основе «легкой воды».

Эти составы были всесторонне испытаны в полигонных и корабельных условиях, в 1968 г. приняты в ВМС США как основное средство пожаротушения на кораблях, прежде всего, на авианосцах.

Самодвижущиеся установки аэродромного типа (моторные тележки), которыми начали в конце 60-х годов снабжать авианосцы (по четыре на корабль), имели два огнетушащих состава (twinned agent unit) — «легкую воду» и бикарбонат калия. Эти тележки имеют подачу по «легкой воде» 189 л/мин, по бикарбонату калия — 2,26 кг/с. Как сообщалось в печати США, один заряд огнетушащих составов может обеспечить тушение пожара на площади 230 м2, при времени непрерывной работы 1,5 минуты. При этом запас на тележке составляет 310 л воды и пенообразователя и 90 кг порошка бикарбоната калия.

Использование двух таких тележек для тушения пожара на АВ «Энтерпрайз» показало, что их подача слишком мала для таких случаев. Помимо этого, близость тележек к месту происшествия приводила к тому, что осколками бомб нарушалась герметичность баллонов с воздухом и контейнеров с огнетушащими составами, в результате чего они выходили из строя. Поэтому было решено оснащать крупные авианосцы подвижными и быстродействующими пожарными машинами (тоже аэродромного типа), обладающими значительно большей подачей по сравнению с тележками. Это были машины МВ-5 (рис. 22).

Подача пенного ствола машины МВ-5 около 1000 л/мин раствора пенообразователя и до 2,25 кг/с порошка. Машина имеет цистерны для воды емкостью 1510 л, «легкой воды»—113 л и насос для подачи раствора «легкой воды» к пенному стволу, установленному над кабиной водителя. {121}

Рис. 22. Пожарная машина МВ-5, применяемая на полетных палубах авианосцев США

Машина оборудована также резервуаром для хранения порошка бикарбоната калия, распылителем и пожарным шлангом. Общая подача машины примерно в 6 раз превышает подачу тележки, а тушение пожара может осуществляться с дистанции около 30 м, т. е. с более безопасного расстояния. «Энтерпрайз», например, оснащен пятью такими машинами. Они рассматриваются как временные впредь до создания более совершенных стационарных противопожарных систем.

Для тушения пожаров на полетной палубе приспособлена также система водяной защиты (СВЗ, в американском наименовании — NBC), основное назначение которой — смыв радиоактивных осадков при ядерных взрывах. Возможность использования СВЗ для тушения по­жаров на полетных палубах была подтверждена специальными испытаниями, на которых воспроизводились условия пожара на АВ «Энтерпрайз». На этих испытаниях при использовании в качестве огнетушащего состава 6%-ного раствора «легкой воды» время тушения составило около 2 минут. Условия испытаний были следующие: количество горящего разлитого топлива JP-5 — 13 300 л, площадь горения — 864 м2, скорость ветра — 30 уз и время свободного горения — 60 с.

Распылители СВЗ устанавливают на полетной палубе по зонам, протяженность каждой из них — около 38 м. Зону площадью около 930 м2 обслуживает автономная {122} магистраль СВЗ. Управление по зонам осуществляется дистанционно от пультов, размещенных в ходовой рубке и в посту управления полетами самолетов. Управлять системой можно и из поста управления взлетно- посадочными операциями корабля.

Спринклерная система для ангаров управляется с пожарных постов, расположенных на ангарной палубе. Планируется автоматический пуск этой системы в действие от извещателей обнаружения пожара.

Одновременно была осуществлена замена пенообразователя протеинового типа на «легкую воду» в стационарной корабельной системе. Эта дистанционно управляемая система пенотушения на крупных авианосцах состоит из 17 автономных участков.

Основными ее элементами (рис. 23) являются: цистерна с пенообразователем (емкостью {123} 1135 л), пеносмеситель — дозатор (производительностью по раствору пенообразователя 3785 л/мин), дистанционно управляемая арматура, трубопроводы, лафетные, и ручные пенные стволы и пожарные рукава, приводы и сигнализация. Цистерна с пенообразователем, пеносмесители и дистанционно управляемая арматура размещены на второй палубе. Управление системой пенотушения осуществляется из пожарных постов полетной палубы, ангара и мест установки пеносмесителей.

В связи с тем, что стационарная система пенотушения, предназначавшаяся ранее для тушения пожаров в ангарах, стала применяться и для обслуживания полетной палубы, кроме того, она должна еще обеспечивать СВЗ и установки пожаротушения в МКО, помещениях электро­технического и электронного оборудования, возникла необходимость увеличить количество пенообразователя на каждом автономном участке авианосца. Прежняя цистерна с пенообразователем заменяется другой, емкость которой в два раза больше прежней. Снабжение забортной водой системы пенотушения потребовало увеличения числа насосов водяной пожарной системы и их общей производительности, что, в свою очередь, привело к повышению мощности источников электроэнергии.

'

1 — полетная палуба; 2 — кнопка дистанционного пуска системы пенотушения; 3 — кнопка пожарной тревоги; 4 — телефон связи между пожарными постами; 5 — проход; 6 — клапаны для присоединения шлангов и пенных стволов; 7 — галерейная палуба; 8 — монитор — лафетный пенный ствол; 9 — ангарная палуба; 10 — пуск пены; 11 — вентиляция; 12 — звонок; 13 — цистерна для хранения пенообразователя; 14 — визуальный указатель уровня; 15 — клапан гидранта; 16 — дистанционно управляемая арматура; 17 — задвижка; 18 — пеносмеситель; 19 — клапан, регулирующий мощность; 20 — гибкое соединение; 2/ — фильтр; 22 — вторая палуба; 23 — главная пожарная магистраль

Рис. 23. Типовая схема системы иенотушения авианосцев:

По данным американской печати, подача пены на полетную палубу или в ангар обеспечивается в течение 30 с с момента получения сигнала о пожаре. Это технические возможности системы. Но есть данные, говорящие о том, что эти возможности не всегда могут быть реализованы. Так, например, проведенное в 1973-1974 гг. в ВМС США инспектирование показало, что противопожарные средства на кораблях, в частности на авианосцах, находятся в неудовлетворительном состоянии. На одном из подвергшихся проверке авианосцев не работала, например, спринклерная система на ангарной палубе. На этом же корабле не мог быть использован пенообразователь «легкая вода». Были обнаружены и другие недостатки системы
пенотушения корабля, снижающие ее запроектированные технические возможности. Поскольку эта система считается одной из важнейших, особенно в комплексе противопожарных средств авианосцев, обращено большое внимание на ее техническое состояние на кораблях.

Установки пенотушения, обслуживающие машинно-котельные отделения и помещения электротехнического и электронного оборудования, применяют на авианосцах (по 16 на корабль) и на других (неавианосных) кораблях. {124}

Такие установки включают в себя: стационарный огнетушитель с порошком бикарбоната калия, баллоны со сжатым газом, сдвоенные шланги с распылителями и трубопровод подачи раствора «легкой воды» от пеносмесителей автономных участков корабельной противопожарной системы.

Новые огнетушащие составы запланировано применять на кораблях всех основных классов ВМС США.

На рис. 24, 25 приведены типы противопожарных мониторов, применяемых на ангарных палубах американских авианосцев, а также в машинных отделениях и в помещениях электротехнического и электронного оборудования.

Во время испытаний системы водяной защиты для тушения пожаров была установлена недостаточная эффективность распылителей при сильном ветре. Разработанный новый тип распылителя (рис. 26), по мнению американских специалистов, обеспечивает равномерное покры­тие участков полетной палубы раствором пенообразователя. Новыми распылителями оснащаются авианосцы США во время ремонта.

Кроме перечисленных систем пенотушения на кораблях остается по-прежнему водяная пожарная система, используемая практически во всех корабельных помещениях. И, как указывалось выше, мощность этой системы непрерывно растет: например, на атомном АВ «Нимиц» установлено 18 пожарных насосов с общей подачей 100 ООО л/мин, что, кстати, превышает мощность водяной пожарной системы авианосцев типа «Эссекс» примерно в три раза. На авианосцах типа «Эссекс» установлено 10 насосов с общей подачей 34 ООО л/мин. Еще более разительной выглядит на этих авианосцах разница в мощностях пенотушения, соотношение которых равно 10 : 1. В то время как на авианосцах типа «Эссекс» общая производительность пенотушения равна 450 л/мин, на «Нимице» она составляет 4500 л/мин. Такие соотношения объясняются не только разницей в размерах кораблей, но и значительно возросшими требованиями к противопожарной безопасности авианосцев.

К настоящему времени сложилась следующая номенклатура противопожарных технических средств, применяемых на крупных авианосцах США:

1) водяная пожарная система — для всех корабельных помещений и палуб;

2) стационарная система пенотушения — для полетных палуб и ангаров; {125}


 

Рис. 25. Двухагентная противопожарная установка в Рис. 24. Противопожарный монитор на ангарной палубе

машинных и электротехнических помещениях кораблей США

Рис. 26. Новый палубный распы­литель раствора системы водяной защиты авианосцев США

{126}

3) стационарные установки иенотушения — для машинно-котельных отделений и помещений электротехнического и электронного оборудования;

4) система водяной защиты с пенотушением — для полетных палуб и надстроек;

5) спринклерная система пенотушения — для ангаров и отдельных участков главной палубы (в районе кормы);

6) пожарные машины МВ-5 и самоходные тележки с пенотушением — для полетных и ангарных палуб.

Кроме того, все внутренние помещения кораблей оборудованы порошковыми огнетушителями.

С теми или иными вариациями указанные системы применяют и на кораблях других классов.

Наряду с совершенствованием противопожарных средств на полетных палубах и в ангарах авианосцев осуществляется ряд мер конструктивной защиты. Для защиты самолетов и личного состава,

находящихся в районе катапульт при подготовке к вылету, от опасного теплового и динамического воздействия газовых струй реактивных двигателей самолета, находящегося на катапульте, на полетной палубе предусмотрено специальное устройство для их отклонения. Конструкция устройства, обычно в виде отражательных щитов, должна обеспечивать надежное отклонение потока струй в нужном направлении в соответствии с основным назначением и так, чтобы он не оказал вредного воздействия на хвостовое оперение самого катапультируемого самолета.

В ангарах с целью локализации действия пожаров и взрывов применяют огнестойкие занавеси (шторы), изготавливаемые из армированного асбеста. Эти занавеси в обычных условиях находятся в свернутом состоянии под подволоком ангара. При необходимости они могут в течение 30 с разделить ангар на ряд автономных отсеков, как правило, на три.

Ввиду того что при работе систем орошения может произойти значительное затопление ангара, по его бортам устанавливаются сточные шпигаты. Аналогичные шпигаты устраиваются и на полетной палубе. {127}

Взрывы боеприпасов. Рассмотрим теперь характер повреждений кораблей в результате происходивших на них взрывов боеприпасов (конечно, без боевых воздействий) и меры, направленные на их предотвращение.

Опыт аварий и катастроф показывает, что на кораблях имели место, по крайней мере, три типа взрывов. Первый тип — это взрывы отдельных боеприпасов, второй — взрывы погребов боеприпасов и третий — взрывы ВВ, перевозимых на военных транспортах.

Взрывы первого типа происходили, главным образом, в артиллерийских башнях и палубных артустановках (J1K «Миссисипи» — 1924 г., КР «Девоншир» — 1929 г. и КР «Сент Пол» — 1952 г., ЭМ «Бак» и «Джон Пирс» — оба 1956 г., крейсер «Ньюпорт-Ньюс» — 1972 г.).

Такие взрывы были обычно связаны с неправильными приемами стрельбы или небрежностью при проведении стрельб, плохим содержанием артиллерийских систем, в частности стволов. При анализе случая взрыва башни J1K «Миссисипи» этот вопрос был рассмотрен достаточно подробно. Подобные одиночные взрывы имели своими последствиями повреждения кораблей и какое-то количество человеческих жертв, но, как правило, корабли при этом не погибали, а оставались на плаву. К такому типу взрывов относятся и взрывы отдельных собственных мин (МЗ «Токива» — 1927 г.) или глубинных бомб (ЭМ «Силой» — 1930 г.), и других боеприпасов. Они также не приводили к потере кораблей.

Иное дело, когда такие взрывы сопровождаются пожарами, как это было на «Форрестоле» или «Энтерпрайзе». В этих случаях они влекли за собой весьма тяжелые последствия.

Взрывы отдельных боеприпасов происходили на авианосцах при посадке самолетов на корабль. Примером может служить авианосец «Саратога» (1964 г.). Авианосец получил сильные повреждения, но количество жертв было относительно невелико. Этот случай не повлек за собой таких губительных последствий, как на «Форрестоле» и «Энтерпрайзе», так как в зоне посадки не было скученности самолетов, количество взрывов было невелико и возникшие отдельные очаги пожаров могли быть относительно быстро ликвидированы.

Источником взрыва второго типа может быть самовозгорание пороха в погребе или небрежное обращение с порохом и о огнем внутри погреба, либо, наконец, диверсия. Самовозгорание пороха может явиться результатом его некондиционности (по причинам состава пороха, дефектов {128} его изготовления или длительности хранения) или нарушения условий хранения боезапаса, в частности повышения температуры в погребе выше допустимой, когда начинается разложение пороха, приводящее к его воспламенению, а затем и к взрыву.

Небрежность в обращении с порохом может проявиться в недостаточном вентилировании погреба, в результате чего в нем может произойти образование и накопление гремучей смеси, опасной в отношении возгорания пороха. Наличие в погребе открытого огня не раз являлось источником возгорания пороха и взрыва погреба. Как видно, причин взрыва погреба боезапаса может быть много и они в действительности имели место. Причины эти часто бывают эксплуатационного характера, но вместе с тем они связаны с качеством используемого боезапаса и зависят также от конструктивного устройства погребов, их противопожарного оборудования и его состояния.

На практике имеют место взрывы не только отдельных погребов, но и группы погребов (КРБ «Натэл» — 1915 г., J1K «Цукуба» — 1917 г) и даже всех погребов корабля (J1K «Леонардо да Винчи» — 1916 г., ЛК «Вэнгард» — 1917 г).

Следует упомянуть, что из имеющихся в нашем распоряжении материалов видно, что такие взрывы происходили во всех основных флотах мира, кроме германского. Является ли это следствием «неразглашения военной тайны» или результатом более «заботливого» и продуман­ного отношения к этим вопросам в бывшем германском ВМФ? Возможно, что здесь наблюдается и то и другое. Но, если учесть поведение германских кораблей в боевых условиях, можно с большой уверенностью предположить, что над порохами в германском флоте поработали более серьезно, так как пороховые заряды даже при боевых воздействиях на корабли редко взрывались, а чаще горели, не взрываясь. Вспомним хотя бы случай с германским ЛКР «Дерфлингером» в ютландском бою. На этом корабле в результате попаданий тяжелых снарядов (381-мм) в 3-й 4-ю башни возникали пожары и происходило воспламенение пороха в зарядных погребах. Пороха горели, но они не взрывались, что спасло корабль, так как взрывов погребов не произошло. В английском же флоте, наоборот, зарядные погреба часто взрывались, что приводило к гибели кораблей. При этом происходило быстрое воспламенение большого количества кордита и после короткого срока его горения возникал взрыв погреба. Так {129} погибли, например, в том же
ютландском бою английские линейные крейсеры «Индефатигебл», «Куин Мэри» и «Инвинсибл». Так погиб в период второй мировой войны английский JIKP «Худ».

Взрывы погребов боезапаса в подавляющем большинстве приводили к разрушению корабля, его гибели и сопровождались большими человеческими потерями. Поэтому, несмотря на то, что в последние годы взрывы погребов боезапаса наблюдаются довольно редко, на предотвращение таких взрывов обращено особое внимание. Это тем более будет понятно, если учесть, что на многих современных кораблях имеется такой боезапас, что взрыв погреба может привести не только к разрушению самого корабля, но к неисчислимым бедствиям, потерям вокруг корабля и на большом от него удалении.

Какие же меры могут быть приняты для того, чтобы предотвратить подобные взрывы? Прежде всего, это, конечно, меры конструктивного характера, поскольку именно они направлены на то, чтобы предотвратить возможность взрыва.

Начнем с того, что на больших кораблях погреба стараются разместить в возможно более защищенных местах. Например, на современном авианосце погреба боезапаса размещают в цитадели, в ее носовой и кормовой частях, под всеми броневыми палубами и за поясом подводной защиты (рис. 27). Размещение погребов в возможно большем удалении друг от друга снижает вероятность детонации всего боезапаса корабля в целом. Общепринятыми мерами на кораблях являются также: хранение пиротехнических средств в местах, где их случайное возгорание не нанесет ущерба жизненным частям корабля; применение мощной вентиляции погребов; наличие автоматических систем сигнализации о повышении в погребах температуры и обнаружении в них возгорания; применение автоматических систем орошения (спринклеров), срабатывание {130} которых основано на различных физических прин­ципах (температура, давление, свет, дым).








Дата добавления: 2016-05-16; просмотров: 1559;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.022 сек.