Теоремы сложения и умножения вероятностей. Пусть - два случайных события.
Теорема сложения
Пусть - два случайных события.
Теорема сложения.Вероятность суммы двух событий или вероятность появления хотя бы одного из них равна сумме вероятностей этих событий минус вероятность их совместного появления:
.
Для несовместных событий , поэтому теорема примет вид:
.
Для произвольного числа слагаемых:
;
Следствие.
1. Очевидно, что - вероятность суммы событий не превышает сумму вероятностей этих событий.
2. , если события попарно несовместны.
3. Если события образуют полную группу, то есть , то .
Условная вероятность
Пусть - совместные события.
Условной вероятностью события при условии, что событие произошло, называется число, определяемое равенством
.
Здесь и - вероятности, причём .
События называются зависимыми, то есть вероятность события зависит от того, произошло или нет событие .
Теорема умножения
Теорема умножения. Вероятность произведения двух событий равна произведению вероятностей одного из них, умноженной на условную вероятность другого при условии, что первое событие произошло.
.
Для трех слагаемых ;
для последовательности событий
.
В последней формуле вероятность произведения событий равна произведению вероятности одного из них на условные вероятности всех остальных событий, причем вероятность каждого последующего вычисляется в предположении, что все предыдущие уже произошли.
Дата добавления: 2016-04-22; просмотров: 628;