Под углом друг к другу

 

Задача 15.3. Две одинаковые собирающие линзы 1 и 2, имею­щие каждая фокусное расстояние F, расположены так, что их главные оптические оси составляют угол a,и глав­ная оптическая ось первой линзы проходит через центр вто­рой линзы (рис. 15.12). На главной оптической оси пер­вой линзы на расстоянии F расположен точечный источник света S. Найти расстояние между источником света и его изображени­ем в паре линз. Расстояние между центрами линз равно l.

 

F l a Рис. 15.12
х = ?

Решение. Построим изображение источника. Проведем произвольный луч SA из точки S к линзе 1 (рис. 15.13). Поскольку источник S находится в главном фокусе этой линзы, то после преломления луч SA пойдет параллельно главной оптической оси линзы 1 до пересечения с линзой 2 в точке В.

Рис. 15.13

Луч О1О2, проходящий через оптические центры обеих линз, проходит через систему, не преломляясь. Обозначим главный фокус F2 линзы 2 и проведем фокальную плоскость f линзы 2. Тогда параллельные лучи АВ и О1О2 после преломления в линзе 2 пересекутся в побочном фокусе – точке С. Эта точка С и будет изображением S¢ точки S в системе двух линз, т.е. C º S¢.

Искомая величина х, как видно их рис. 15.13, равна

х = SO1 + O1O2 + O2С,

где SO1 = F, O1O2 = l, а отрезок О2С легко определить из DО2F2С: . Тогда

Ответ:

СТОП! Решите самостоятельно: С7, D1, D2.

 








Дата добавления: 2016-04-11; просмотров: 2459;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.