Спектральный анализ интегрируемых сигналов.

Сигнал можно сопоставить спектральную плотность если сигнал абсолютно интегрирован.

К абсолютно интегрированному сигналу не относятся гармонические колебания и постоянный ток.

Примеры абсолютно интегрируемых и неинтегрируемых сигналов на (рис. 16).

Спектры таких сигналов представляются через дельта-функции.

Спектр сигнала постоянного уровня А представляет собой дельта-импульс, расположенный на нулевой частоте ( ).

Физический смысл данного выражения – сигнал, постоянный по модулю и по времени имеет постоянную составляющую только на нулевой частоте.

- спектр синусоидального сигнала.

Любой периодический сигнал можно представить рядом Фурье в комплексной форме, то есть в виде суммы синусоидальных сигналов.

Спектры постоянного тока, синусоидального и периодического сигнала показаны на (рис. 17).

На анализаторе спектра спектр периодического сигнала будет наблюдаться в виде последовательности остроконечных импульсов. Амплитуды данных импульсов пропорциональны амплитудам гармоник. Типичный вид спектра представлен на (рис. 18).

Спектральный анализ можно применять и к случайным сигналам. Для них рассматривается спектр мощности . Для примера рассмотрим белый шум (рис. 1).

Белый шум имеет равномерный спектр, то есть выполняется условие .








Дата добавления: 2015-12-29; просмотров: 1534;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.