Вопрос. Прямое преобразование (переход от сигнала к спектру).
Разложение в ряд Фурье позволяет получить спектр только для периодических сигналов. Преобразование Фурье расширяет область применения спектрального анализа на непериодические сигналы.
Пусть s(t) – одиночный импульсный сигнал конечной длительности. Дополним его таким же, периодически следующим сигналом, с периодом Т. Получим последовательность импульсов (рис.15).
Чтобы перейти к преобразованию Фурье и найти спектр одиночного импульса необходимо найти предельный вид ряда Фурье в комплексной форме при
Расчет спектра:
Физический смыл спектральной плотности состоит в том, что она является коэффициентом пропорциональности между длинной малого интервала частот Δf в близи частоты f0 и амплитуды гармонического сигнала с частотой f0. Сигнал s(t) как бы складывается из множества разных синусоидальных сигналов малой амплитуды. Спектр плотности показывает вклад в сигнал элементарных синусоидальных сигналов каждой частоты.
Спектр плотности вероятности является комплексным числом и отображается кривой на комплексной плоскости.
- действительное число – амплитудный спектр
- спектр мощности
- фазовый спектр
Дата добавления: 2015-12-29; просмотров: 1975;