Линейные однородные уравнения. Определения и общие свойства

Определение. Дифференциальное уравнение го порядка называется линейным, если оно первой степени относительно искомой функции и её производных и имеет вид , где и - заданные функции от или постоянные.

Если то уравнение называется неоднородным, если же то уравнение называется линейным однородным уравнением.

Определим некоторые основные свойства линейных однородных уравнений, ограничиваясь уравнениями второго порядка:

1. Если и - два частных решения линейного однородного уравнения второго порядка то есть также решение этого уравнения.

2. Если есть решение уравнения и постоянная, то есть также решение этого уравнения.

Определение. Два решения уравнения и называются линейно независимыми на отрезке , если их отношение на этом отрезке не является постоянным, т.е. если .

Определение: Если и функции от , то определитель называется определителем Вронского.

3. Если , то .

4. Если и - два линейно независимых решения уравнения , то есть его общее решение, где произвольные постоянные.

 








Дата добавления: 2015-12-29; просмотров: 1059;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.