Определение неизвестных коэффициентов A0 и A1 модели

Линейная одномерная модель (рис. 5.3).

Рис. 5.3. Одномерная модель черного ящика

Для каждой из снятых экспериментально точек вычислим ошибку между экспериментальным значением и теоретическим значением , лежащим на гипотетической прямой (см. рис. 5.2):

Ошибки для всех точек следует сложить. Чтобы положительные ошибки не компенсировали в сумме отрицательные, каждую из ошибок возводят в квадрат и складывают их значения в суммарную ошибку уже одного знака:

Цель метода — минимизация суммарной ошибки за счет подбора коэффициентов . Другими словами, это означает, что необходимо найти такие коэффициенты линейной функции , чтобы ее график проходил как можно ближе одновременно ко всем экспериментальным точкам. Поэтому данный метод называется методом наименьших квадратов.

Суммарная ошибка является функцией двух переменных и , то есть , меняя которые, можно влиять на величину суммарной ошибки (см. рис. 5.4).

Рис. 5.4. Примерный вид функции ошибки

Чтобы суммарную ошибку минимизировать, найдем частные производные от функции по каждой переменной и приравняем их к нулю (условие экстремума):

 

После раскрытия скобок получим систему из двух линейных уравнений:

Для нахождения коэффициентов и методом Крамера представим систему в матричной форме:

 

Решение имеет вид:

 

Вычисляем значения и .

Проверка

Чтобы определить, принимается гипотеза или нет, нужно, во-первых, рассчитать ошибку между точками заданной экспериментальной и полученной теоретической зависимости и суммарную ошибку:

 

И, во-вторых, необходимо найти значение по формуле , где — суммарная ошибка, — общее число экспериментальных точек.

Если в полосу, ограниченную линиями и (рис. 5.5), попадает 68.26% и более экспериментальных точек , то выдвинутая нами гипотеза принимается. В противном случае выбирают более сложную гипотезу или проверяют исходные данные. Если требуется большая уверенность в результате, то используют дополнительное условие: в полосу, ограниченную линиями и , должны попасть 95.44% и более экспериментальных точек .

Рис. 5.5. Исследование допустимости принятия гипотезы

Расстояние связано с следующим соотношением:

что проиллюстрировано на рис. 5.6.

Рис. 5.6. Связь значений σ и S

Условие принятия гипотезы выведено из нормального закона распределения случайных ошибок (см. рис. 5.7). — вероятность распределения нормальной ошибки.

Рис. 5.7. Иллюстрация закона нормального распределения ошибок








Дата добавления: 2015-12-08; просмотров: 891;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.