Точки перегиба функции и участки выпуклости и вогнутости графика функции
График функции называется выпуклым в интервале если он расположен ниже касательной, проведенной в любой точке этого интервала.
График функции называется вогнутым в интервале если он расположен выше касательной, проведенной в любой точке этого интервала.
Рис. 32
Участки выпуклости и вогнутости графика функции
Достаточное условие выпуклости (вогнутости) графика функции: если в интервале то график функции является выпуклым в этом интервале; если то в интервале график функции вогнутый.
Пусть функция дифференцируема на интервале и точка Точка графика функции называется точкой перегиба этого графика, если существует такая окрестность точки оси абсцисс, в пределах которой график функции слева и справа от точки имеет разные направления выпуклости. Если –абсцисса точки перегиба графика функции то вторая производная равна нулю или не существует. Точки, в которых не существует, называются критическими точками второго рода.
Если – критическая точка второго рода и при произвольном достаточно малом выполняются неравенства
то точка кривой с абсциссой является точкой перегиба. Если
имеют одинаковые знаки, то точка кривой с абсциссой не является точкой перегиба.
Рассмотрим пример. Найти промежутки выпуклости и вогнутости графика функции
Продифференцируем два раза данную функцию, приравняем к нулю, полученное уравнение решим относительно переменной получим критические точки второго рода, которые поделят всю область определения функции на участки выпуклости и вогнутости
Точка делит всю область определения функции на два участка. Определим знак производной второго порядка на этих участках:
следовательно, данная кривая выпукла на участке
следовательно, данная кривая вогнута на участке
Дата добавления: 2015-08-11; просмотров: 1162;