Возникновение понятия натурального числа
Теоретические основы формирования элементарных математических представлений у дошкольников включают детальное изучение лишь системы натуральных чисел. Поэтому, говоря здесь «числа», мы имеем в виду натуральные числа.
К построению математических моделей явлений, основанному на отвлечений от всех свойств предметов, кроме их количественных отношений и пространственных форм, человечество прибегало с первых шагов изучения окружающего мира. Одним из первых достижений на этом пути было возникновение и формирование понятия натурального числа. Оно появилось, по-видимому, на довольно .позднем этапе развития мышления, поскольку предполагает уже способность к созданию и оперированию абстрактными понятиями.
В процессе практической деятельности люди пришли к абстрагированию такого общего свойства конечных множеств, каким является их численность. Чтобы усмотреть нечто общее между множеством, состоящим из шести рыб, и множеством, состоящим из шести звезд, нужна уже высокая степень умения абстрагироваться от второстепенного, умение выделять главное. Этнографы нашли племена, в языках которых существует много видов числительных: числительные для множеств живых существ отличаются от числительных для множеств плодов, орудий охоты и т. д. Однако на ранней стадии развития люди еще не могли достигать в рассуждениях достаточной степени общности и уровень абстрагирования еще не позволял формулировать общие свойства предметов, каким является натуральное число, и тем более вводить для его обозначения специальные символы.
Процесс формирования понятия числа- был сложным и длительным. На самом раннем этапе устанавливалась равночисленность различных множеств, общее же свойство равночисленных множеств еще не отделялось от конкретной природы сравниваемых множеств. Например, знали, что два рыболова поймали поровну рыб, но не выражали этого каким-либо числом. В дальнейшем практика экономических и социальных взаимоотношений привела к необходимости выражать численность одних множеств уже через численность других множеств, т. е. общее свойство равночисленное™ стало осознаваться как нечто отличное от конкретной природы самого множества, его элементов. Однако в качестве эталонов выступают еще различные множества, состоящие из подручных предметов — эквивалентов равночисленности множеств предметов. Еще позже определенное множество, например пальцы на руках и ногах, начинают выступать в качестве своеобразного единственного эталона количества, что позволило выделить общее свойство численности, отличное от всех особенных свойств множеств. Впоследствии общее свойство всех равночисленных множеств абстрагируется от самих множеств и выступает в «чистом виде», т. е. как абстрактное понятие натурального числа. Далее в качестве эталона численности уже выступают сами натуральные числа, когда люди говорят не «рука яблок», а «пять яблок» (интересно, что в слове «пять» сохранилось воспоминание о «пясти» т. е. о ладони). И наконец, происходит отвлечение от реально существующих ограничений счета и возникает понятие о сколь угодно больших числах, о больших натуральных числах. Возникает абстракция бесконечного множества натуральных чисел. Объектом научного анализа становятся свойства элементор самого этого множества, в отвлечении от тех предметов, счет которых привел к созданию понятия числа. Возникает теория, описывающая систему чисел с ее свойствами и закономерностями.
Понятие числа, возникшее как математическая модель исчисления предметов, само становится основой для построения новых математических моделей. Хотя свойства чисел раскрываются в отношениях одних чисел к другим, но не в отношениях этих чисел к реальному миру, каждое свойство натуральных чисел допускает конкретную реализацию в виде свойства совокупностей реальных объектов. Это связано с тем, что свойства и отношения в множестве натуральных чисел являются отвлеченными образами свойств и отношений множеств, состоящих из конкретных предметов.
Как будет показано дальше (глава XI), процесс формирования представлений дошкольников о числе в известном смысле в общих чертах повторяет основные этапы исторического развития этого понятия.
В математике известны различные способы построения теории натуральных чисел. Мы' рассмотрим лишь основные идеи двух теорий натуральных чисел, количественной и порядковой, находящие отражение в формировании представлений о числе, счете и арифметических операциях.
Дата добавления: 2015-07-10; просмотров: 1272;