Алгебраическая форма записи комплексного числа.

,

где .

Определение. - алгебраическая форма записи комплексного числа, причем единственная.

Предложение 1. для любого .

 

Определим действия сложения и умножения на множестве комплексных чисел, заданных в алгебраической форме:

Определение.Сопряженным к комплексному числу называется комплексное число .

Свойства сопряженных комплексных чисел:

1. ;

2. ;

3. ;

4. т.т.т.,к. ;

5. для любого .

 

Определение.Нормой комплексного числа называется число .

Замечание. .

Свойства нормы:

1. ;

2. т.т.т.,к. ;

3. ;

4. если , то .

 








Дата добавления: 2015-08-21; просмотров: 1336;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.