Числовые характеристики системы случайных величин

По аналогии с одномерными СВ для двумерной случайной величины можно записать:

(10.5)

Если говорим о моменте го порядка двумерной СВ, это значит суммируем индексы: . Для однозначного задания момента двумерной СВ необходимо указать любые два числа из трех: , и .

Рассмотрим подробнее:

(10.6)

Как видим для двумерной СВ можно указать три центральных момента второго порядка, особый интерес вызывает смешанный момент.

Ковариацией(или корреляционным моментом) случайных величин и называется математическое ожидание произведения отклонений этих величин от своих математических ожиданий:

(10.7)

Для дискретной СВ:

(10.8)

Для непрерывной СВ:

(10.9)

Теорема: Корреляционный момент двух независимых случайных величин и равен нулю.

Доказательство: (Докажем эту теорему для непрерывных СВ). Пусть и независимые случайные величины, тогда согласно (10.4) . Подставим это в выражение (10.9)

(10.10)

Ковариация двух случайных величин характеризует как степень зависимости случайных величин, так и их рассеяние вокруг точки . Если рассеяние (степень разброса) мало, то и ковариация мала.

Ковариация двух случайных величин равна математическому ожиданию их произведения минус произведение математических ожиданий, т.е.

(10.11)

Коэффициентом корреляции двух случайных величин называется отношение ковариации к произведению средних квадратических отклонений этих величин:

(10.12)

Коэффициент корреляции является безразмерной величиной и не зависит от степени разброса, т.к. функция нормирована на меру разброса .

Пример 1.Имеются линейно зависимые случайные величины, т.е.

.

Необходимо вычислить коэффициент корреляции.

Решение. Пусть для заданной СВ . Тогда, учитывая свойства получим:








Дата добавления: 2015-06-10; просмотров: 719;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.