Условная плотность распределения

Рассмотрим другой подход при определении вероятности попадания двумерной СВ в элементарный прямоугольник со сторонами и , и устремим и к нулю.

Рассмотрим вероятность попадания в элементарный прямоугольник как произведение вероятности попадания в бесконечную по аргументу полосу равную на вероятность попасть в полосу при условии, что аргумент попал в полосу - . В связи с тем, что аргументы и равносильны, запишем:

. (10.1)

Таким образом, двумерная плотность распределения равна произведению одномерных плотностей распределения, одна из которых условная. Отсюда следует, что условная плотность распределения равна:

(10.2)

Случайная величина не зависит от другой случайной величины, если безусловная плотность распределения этой величины равна условной плотности распределения:

(10.3)

В этом случае говорят, что случайные величины и статистически независимы.

При независимости случайных величин и получим:

(10.4)









Дата добавления: 2015-06-10; просмотров: 794;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.