ОПЕРАЦИИ НА МНОЖЕСТВАХ

ЛИНЕЙНЫЕ ПРОСТРАНСТВА

ВВЕДЕНИЕ

 

Решение многих задач современной математики (и не только) сводится к построению и изучению неких абстрактных структур, являющихся конгломератом неких множеств с заданными на этих множествах операциями. Этот способ заманчив в силу своей общности: множества могут быть разной природы и операции, заданные на этих множествах, могут быть разными, но обладать одинаковыми свойствами. Если получен результат, опираясь на свойства операций, то результат этот имеет место во всех множествах, где операции имеют те же свойства.

 

ОПЕРАЦИИ НА МНОЖЕСТВАХ

 

Пусть имеется некоторое множество М. И пусть на множестве М задан внутренний закон композиции, т.е. любой паре элементов из М поставлен в соответствие элемент того же множества М

"х, уÎМ $ zÎM | x y = z.

В этом случае говорят, что на множестве М корректным образом задана внутренняя операция.

Пусть кроме множества М задано некоторое другое множество Р. И пусть на множестве М задан внешний закон композиции, т.е. любому элементу из М в совокупности с произвольным элементом из Р поставлен в соответствие элемент из М:

"хÎМ Р | $ zÎM | a ʘ x = z.

В этом случае говорят, что на множестве М над множеством Р корректным образом задана внешняя операция.

Отметим, что во внутренней операции участвуют два элемента одного и того же множества, а во внешней операции – элементы различных множеств. Корректность операции на М означает, что ее результат принадлежит множеству М, а не корректность - что ее результат не принадлежит множеству М.

ГРУППА

Пусть задано некоторое множество G с элементами, вообще говоря, произвольной природы. Пусть на этом множестве корректным образом задана внутренняя операция, т.е. "х, уÎG $ zÎG | z « x y и эта операция удовлетворяет свойствам:

1) (x y)⊕ z = x⊕(y z) – ассоциативность;

2) $qÎG | x ⊕ q = x – существование нейтрального элемента;

3) "xÎG, $yÎG | x y = q – существование противоположного элемента.

Множество G с так введенной операцией называется группой по этой операции.

Если G – группа по сложению, то нейтральный элемент называется нулевым, а противоположный – противоположным.

Если G – группа по умножению, то нейтральный элемент называется единичным, а противоположный – обратным.

Если, кроме указанных свойств, операция, определенная в G обладает свойством x y = y x , то группа называется коммутативной или абелевой группой.








Дата добавления: 2015-05-05; просмотров: 937;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.