Математические методы в теории и практике управления (Дж. Данциг, Л.В. Канторович и математическое программирование).
Л. В. Канторовичпо праву считается одним из основоположников современного экономико-математического направления, ядро которого составляют теория и модели линейных экстремальных задач. Это направление было затем переоткрыто и развито в трудах других ученых (прежде всего Дж. Данцига) и получило название линейное программирование. Идеи и методы этой дисциплины широко используются для постановки и решения разнообразных экстремальных и вариационных задач не только в экономике, но и в физике, химии, энергетике, геологии, биологии, механике и теории управления. Линейное программирование оказывает существенное влияние также на развитие вычислительной математики и вычислительной техники. Нам представляется, что никто другой не сделал так много для использования линейного программирования в экономической теории, как Л. В. Канторович.
Л. В. Канторович по праву считается одним из основоположников современного экономико-математического направления, ядро которого составляют теория и модели линейных экстремальных задач. Это направление было затем переоткрыто и развито в трудах других ученых (прежде всего Дж. Данцига) и получило название линейное программирование. Идеи и методы этой дисциплины широко используются для постановки и решения разнообразных экстремальных и вариационных задач не только в экономике, но и в физике, химии, энергетике, геологии, биологии, механике и теории управления. Линейное программирование оказывает существенное влияние также на развитие вычислительной математики и вычислительной техники. Нам представляется, что никто другой не сделал так много для использования линейного программирования в экономической теории, как Л. В. Канторович.
Л. В. Канторович родился 19 января 1912 г. в Петербурге в семье врача. Его творческие способности проявились необычайно рано. В возрасте 14 лет он поступил в Ленинградский государственный университет и уже через год начал активную научную деятельность в семинарах В. И. Смирнова, Г. М. Фихтенгольца и Б. Н. Делоне. Первые работы Леонида Витальевича относились к дескриптивной теории функций и множеств. В основном они были выполнены в 1927–1929 гг. Теория функций вещественного переменного и теории множеств занимали тогда одно из центральных мест в математике и оказывали существенное влияние на развитие других разделов математики. Л. В. Канторовичу удалось решить ряд трудных и принципиальных проблем в этой области.
По окончании ЛГУ в 1930 г. Леонид Витальевич преподавал в высших учебных заведениях Ленинграда, продолжая при этом активную научную деятельность. Из этих учебных заведений кроме Ленинградского университета назовем особо Высшее военное инженерно-техническое училище. В годы Великой Отечественной войны Л. В. Канторович был призван в Вооруженные Силы, и преподавание в этом училище было его основным делом. В это время он написал оригинальный курс «Теория вероятностей» (1946), предназначенный для военных учебных заведений и отражающий специфические военные приложения этой науки. ВИТУ, называемое теперь Военным инженерно-техническим университетом, до сих пор хранит память о работе Л. В. Канторовича, и в 1999 г. по инициативе ВИТУ на его здании в Петербурге появилась мемориальная доска в память о нем.
Начиная с 1932 г. Л. В. Канторович работал в должности профессора, а в январе 1934 г. был утвержден в этом звании. В 1935 г. ему была присуждена ученая степень доктора физико-математических наук без защиты диссертации. Профессором ЛГУ Леонид Витальевич оставался до своего отъезда в Новосибирск, о чем пойдет речь ниже.
Вскоре после выхода в свет основополагающей монографии С. Банаха “Thґeorie des operations lineaires” в Ленинградском университете начинает формироваться одна из первых отечественных школ по функциональному анализу. Уже в 1934 г. в цикле работ Л. В. Канторовича были получены важные результаты по теории функционалов и операторов в банаховых пространствах, существенно дополняющие классические исследования И. Радона.
В эти же годы Л. В. Канторович выдвинул фундаментальную идею изучения общих функциональных пространств, наделенных структурой условно полной векторной решетки. Необходимость привлечения структуры порядка в функциональном анализе была осознана почти одновременно рядом математиков (Ф. Риссом и несколько позднее М. Г. Крейном, Г. Биркгофом, Г. Фрейденталем). Выделенный Л. В. Канторовичем класс упорядоченных векторных пространств, обладающих порядковой полнотой, имеет ряд принципиально важных специфических свойств, позволивших предложить новые методы исследования функциональных объектов, в том числе классических. Теория таких пространств — их называют пространствами Канторовича или K-пространствами — является теперь одним из основных разделов функционального анализа. Этим вопросам была посвящена опубликованная в 1950 г. монография «Функциональный анализ в полуупорядоченных пространствах», написанная Л. В. Канторовичем со своими учениками Б. З. Вулихом и А. Г. Пинскером.
Исследования последней четверти прошлого века наглядно показали, что так называемые расширенные или универсально полные пространства Канторовича суть не что иное, как изображения поля вещественных чисел в булевозначных моделях классической теории множеств Цермело — Френкеля. Таким образом, пространства Канторовича столь же неизбежны в математике, как и множество вещественных чисел. В качестве любопытной иллюстрации отметим, что в связи с развитием булевозначного анализа расширенные пространства Канторовича были заново переоткрыты в США под названием булевы линейные пространства спустя почти полвека после своего появления в работах Леонида Витальевича и его учеников.
Л. В. Канторович стоял у истоков формирования современной вычислительной математики. Первые работы по приближенным методам конформных отображений, вариационным методам, квадратурным формулам, численным методам решения интегральных уравнений и уравнений в частных производных были выполнены Л. В. Канторовичем в начале 30-х годов, когда вычислительная математика еще не оформилась в самостоятельную научную дисциплину.
Важную роль в становлении вычислительной математики сыграла монография Л. В. Канторовича и В. И. Крылова «Методы приближенного решения уравнений в частных производных» (1936 г.). Эта книга, в дальнейшем называвшаяся «Приближенные методы высшего анализа», неоднократно переиздавалась, была переведена на английский, немецкий, венгерский, румынский языки и до сих пор широко используется специалистами во всем мире.
Необходимость разработки современных эффективных численных методов анализа разнообразных задач прикладного характера особенно остро стала ощущаться еще в последние предвоенные и в военные годы. А в 1948 г. в связи с необходимостью выполнения важных прикладных расчетов Л. В. Канторович возглавил созданный в Математическом институте им. В. А. Стеклова и расположенный в Ленинграде Отдел приближенных вычислений. Он понимал, что дальнейшее развитие численных методов должно базироваться на фундаментальных результатах теоретических разделов математики, и приступил к исследованиям в этом направлении. Основные результаты этих исследований были обобщены им в работах 1947–1948 гг.: «К общей теории приближенных методов анализа», «О методе Ньютона для функциональных уравнений», «Функциональный анализ и прикладная математика», удостоенных в 1949 г. Сталинской (Государственной) премии.
В начале 50-х годов по инициативе Л. В. Канторовича на математико- механическом факультете Ленинградского университета была организована первая в нашей стране специализация по вычислительной математике, а в дальнейшем и кафедра, которую первоначально возглавил его соавтор В. И. Крылов. Леонид Витальевич всегда подчеркивал значение функционального анализа как теоретической базы вычислительной математики. Поэтому среди сотрудников и выпускников созданных им кафедр вычислительной математики в ЛГУ и НГУ всегда было много специалистов аналитического профиля.
С работами по вычислительной математике связано непосредственное участие Л. В. Канторовича в развитии вычислительной техники. Он руководил конструированием новых вычислительных устройств, ему принадлежит ряд изобретений в этой области. Совместно с учениками он разрабатывал оригинальные принципы машинного программирования для численных расчетов и, что было в те годы совершенно необычайно, для проведения сложных аналитических выкладок.
В 1939 г. вышла небольшая брошюра Л. В. Канторовича «Математические методы организации и планирования производства», в которой зафиксировано открытие линейного программирования — направления, оказавшего большое влияние на развитие экономической науки. В этой работе Леонид Витальевич впервые дал математическую постановку производственных задач оптимального планирования и предположил эффективные методы их решения и приемы экономического анализа этих задач. Тем самым идея оптимальности в экономике была поставлена на прочный научный фундамент.
Л. В. Канторович уже тогда считал необходимым продолжать исследования в следующих направлениях:
- дальнейшее развитие алгоритмов линейного программирования и их конкретизация для отдельных классов задач;
- обобщение предложенных методов с целью изучения более широких классов экстремальных задач с ограничениями, включая нелинейные задачи и задачи в функциональных пространствах;
- приложение таких методов к экстремальным задачам математики, механики и техники;
- распространение новых методов экономического анализа отдельных производственных задач на общие экономические системы;
- приложение этих методов к задачам планирования и анализа структуры экономических показателей на уровне отрасли, региона и народного хозяйства в целом.
Опубликованная в 1951 г. книга «Расчет рационального раскроя промышленных материалов» (написанная с В. А. Залгаллером) отражает замечательный опыт авторов по использованию методов оптимальных расчетов в задачах промышленного раскроя в докомпьютерный период.
Некоторые исследования по первым двум направлениям Л. В. Канторовичем были выполнены еще в предвоенные годы. Теперь основные усилия он сосредоточил на развитии третьего направления. Уже в 1942 г. им был написан первый вариант его знаменитой монографии «Экономический расчет наилучшего использования ресурсов». Однако эта работа настолько опережала время и настолько не соответствовала догматам тогдашней политической экономии (причем именно догматам, а не сути), что ее публикация оказалась возможной только в 1959 г., когда некоторые из догматов оказалось возможным поколебать. Тогда пионерские идеи Л. В. Канторовича получили признание и начали использоваться в экономической практике.
В 1959 г. (и немедленно повторно в 1960 г.), наконец-то, вышла в свет монография Л. В. Канторовича «Экономический расчет наилучшего использования ресурсов». В дальнейшем она была переведена на английский, французский, японский, румынский, словацкий языки. (В это время он еще продолжал свои математические исследования, и в том же году вышла его книга с Г. П. Акиловым «Функциональный анализ в нормированных пространствах», также имевшая несколько изданий и переводов.)
В 1965 г. исследования Л. В. Канторовича в области экономико-математических методов были удостоены Ленинской премии (вместе c активно поддержавшим его академиком В. С. Немчиновым и пришедшим к аналогичным идеям в экономике проф. В. В. Новожиловым), а в 1975 г. Л. В. Канторович вместе с американским экономистом Т. Купмансом был отмечен Нобелевской премией по экономике за вклад в теорию оптимального использования ресурсов.
В 1957 г. было принято государственное решение о создании нового крупного научного центра на востоке страны — Сибирского отделения Академии наук. Л. В. Канторович был в первой группе ученых, приглашенных для работы в Сибирском отделении. В 1958 г. он был избран членом-корреспондентом по Отделению экономики, а в 1964 г. — действительным членом Академии наук по Отделению математики.
В 1958–1960 гг. B. C. Немчинов и Л. В. Канторович возглавляли Лабораторию по применению математических и статистических методов в экономических исследованиях и планировании Сибирского отделения.
В 1960 г. ленинградская группа лаборатории во главе с Л. В. Канторовичем переехала в Новосибирск и влилась в качестве Математико-экономического отделения в Институт математики Сибирского отделения, носящий теперь имя С. Л. Соболева.
Московская группа этой лаборатории стала ядром при создании Центрального экономико-математического института Академии наук, дала толчок к созданию групп в Московском государственном университете и в Госплане, а один из членов этой группы дошел до поста первого заместителя Министра экономики России.
Еще до переезда в Новосибирск под руководством Л. В. Канторовича в Ленинграде были развернуты исследования по теории и численным методам математического программирования, а также в области теории и практического использования моделей оптимального планирования. В частности, разработанные здесь оптимальные тарифы на такси были реализованы в масштабе страны и принесли большой экономический эффект. В эти же годы по инициативе Л. В. Канторовича на математическом и экономическом факультетах Ленинградского университета началась подготовка специалистов по применениям математики в экономике. В частности, большую роль сыграло формирование так называемого шестого курса: наиболее способные выпускники экономического факультета ЛГУ были оставлены для дополнительного одногодичного обучения математике и ее экономическим приложениям, к ним присоединились некоторые выпускники прежних лет и группа экономистов из Москвы. Два московских участника этой группы А. А. Анчишкин и С. С. Шаталин стали впоследствии академиками.
С 1960 по 1970 г. Л. В. Канторович был заместителем директора Института математики СО АН, а также заведующим кафедрой вычислительной математики Новосибирского университета.
Математико-экономическое отделение, организованное Л. В. Канторовичем в Институте математики Сибирского отделения, было одним из первых коллективов, где проблемы применения математических методов в экономике стали решаться комплексно. Наряду с развитием теории оптимального планирования и экономических показателей большое внимание здесь уделяется изучению моделей экономической динамики и равновесия, исследованиям в области выпуклого анализа и теории экстремальных задач, разработке численных методов математического программирования, включая их реализацию на ЭВМ, а также апробации и внедрению разработанных моделей и методов в экономическую практику.
Дата добавления: 2018-03-01; просмотров: 849;