Общая характеристика содержания математических представлений у детей дошкольного возраста
Малыши постигают то содержание математической направленности, которое в современной методике развития математических представлений детей дошкольного возраста именуется предматематикой. Это содержание обеспечивает развитие мышления, освоение логико-математических представлений и способов познания.
Содержание предматематики направлено на развитие важнейших составляющих личности ребенка — его интеллекта и интеллектуально-творческих способностей.
Результатами освоения предматематики являются не только знания, представления и элементарные понятия, но и общее развитие познавательных процессов. Способности к абстрагированию, анализу, сравнению, обобщению, сериации и классификации, умение сравнивать предметы и явления, выяснять закономерности, обобщать, конкретизировать и упорядочивать являются важнейшей составляющей логико-математического опыта ребенка, который дает ему возможность самостоятельно познавать мир.
Освоенные математические представления, логико-математические средства и способы познания (эталоны, модели, речь, сравнение и др.) составляют первоначальный логико-математический опыт ребенка. Этот опыт является началом познания окружающей действительности, первым вхождением в мир математики.
Целью и результатом педагогического содействия математическому развитию детей дошкольного возраста является развитие интеллектуально-творческих способностей детей через освоение ими логико-математических представлений и способов познания.
Задачи математического развития в дошкольном детстве определены с учетом закономерностей развития познавательных процессов и способностей детей дошкольного возраста, особенностей становления познавательной деятельности и развития личности ребенка в дошкольном детстве. Выполнение этих задач должно обеспечивать реализацию принципа преемственности в развитии и воспитании ребенка на дошкольной и начальной школьной ступенях образования.
Основными задачами математического развития детей дошкольного возраста являются:
• развитие у детей логико-математических представлений (представлений о математических свойствах и отношениях предметов, конкретных величинах, числах, геометрических фигурах, зависимостях и закономерностях);
• развитие сенсорных (предметно-действенных) способов познания математических свойств и отношений: обследование, сопоставление, группировка, упорядочение, разбиение;
• освоение детьми экспериментально-исследовательских способов познания математического содержания (воссоздание, экспериментирование, моделирование, трансформация);
• развитие у детей логических способов познания математических свойств и отношений (анализ, абстрагирование, отрицание, сравнение, обобщение, классификация, сериация)';
• овладение детьми математическими способами познания действительности: счет, измерение, простейшие вычисления;
• развитие интеллектуально-творческих проявлений детей: находчивости, смекалки, догадки, сообразительности, стремления к поиску нестандартных решений задач;
• развитие точной, аргументированной и доказательной речи, обогащение словаря ребенка;
• развитие активности и инициативности детей;
• воспитание готовности к обучению в школе: развитие самостоятельности, ответственности, настойчивости в преодолении трудностей, координации движений глаз и мелкой моторики рук, умений самоконтроля и самооценки.
Содержание математического развития детей дошкольного возраста определяется, наряду с целями и задачами, следующими важными факторами.
• Личностно-развивающая направленность содержания математического развития дошкольников должна являться эффективным средством развития интеллектуально-творческих способностей ребенка и содействовать развитию важнейшего личностного качества — самостоятельности в решении интеллектуальных задач.
• Направленность математического содержания, которое осваивает ребенок в дошкольном возрасте, является социализирующей. Накопленный логико-математический опыт ребенка обязательно станет его значимым личностным приобретением, если обеспечит ситуацию успеха в разных видах деятельности, требующих проявления интеллектуально-творческих способностей.
• Содержание математического развития дошкольников пропе-девтично. Осваиваемое ребенком содержание должно позволить ему на чувственном, а затем и логическом уровне познать некоторые стороны действительности и развить те структуры мышления, на основе которых впоследствии будут формироваться основные математические понятия.
• Осваиваемое содержание должно соответствовать возрастным и индивидуальным возможностям дошкольников, быть ориентированным на зону их ближайшего развития.
В качестве основных структурных компонентов содержания математического развития дошкольников выступают логико-математические представления и способы познания, которые представлены в таблице 3 в порядке усложнения.
Реализация обозначенных задач возможна на адекватном им содержании. Первым и важнейшим компонентом содержания математического развития дошкольников являются свойства и отношения. Значимость и необходимость выделения этого компонента обусловлена прежде всего тем, что:
• математические понятия отражают определенные свойства действительности (число — количество, геометрическая фигура — форму, протяженность в пространстве — длину и т.д.); движение к постижению математических понятий начинается с познания соответствующих свойств и отношений;
• умственные действия со свойствами и отношениями — доступное и эффективное средство логико-математического развития детей и их интеллектуально-творческих способностей.
В процессе разнообразных действий с предметами дети осваивают такие свойства, как форма, размер (протяженность в пространстве), количество, пространственное расположение, длительность и последовательность, масса. Первоначально в результате зрительного, осязательно-двигательного, тактильного обследования, сопоставления предметов дети обнаруживают и выделяют в предметах разные их свойства. Дети сравнивают отдельные предметы и группы предметов по разным свойствам, упорядочивают объекты по разным основаниям (например, по возрастанию или убыванию их размера, емкости, тяжести и т. д.), разбивают совокупности на группы (классы) по признакам и свойствам. В процессе этих действий дошкольники обнаруживают отношения сходства (эквивалентности) по одному, двум и более свойствам и отношениям порядка. При этом они учатся оперировать «в уме» не с самим объектом, а с его свойствами (абстрагируют отдельные свойства от самого предмета и от его других, незначимых для решения задачи свойств). Таким образом формируется важнейшая предпосылка абстрактного мышления — способность к абстрагированию.
В процессе осуществления практических действий дети познают разнообразные геометрические фигуры и постепенно переходят к группировке их по количеству углов, сторон, вершин. У детей развиваются конструктивные способности и пространственное мышление. Они осваивают умение мысленно поворачивать объект, смотреть на него с разных сторон, расчленять, собирать и видоизменять его.
В познании величин дети переходят от непосредственных (наложение, приложение, сравнение «на глаз») к опосредованным способам их сравнения (с помощью предмета-посредника и измерения условной меркой). Это дает возможность упорядочивать предметы по их свойствам (размеру, высоте, длине, толщине, массе и другим). Ребенок убеждается в том, что одни и те же свойства в разных объектах могут иметь как одинаковую, так и разную степень выраженности (равные или разные по толщине и т. д.).
Пространственно-временные представления (наиболее сложные для ребенка-дошкольника) осваиваются через реально представленные отношения (далеко — близко, сегодня — завтра). Познание этих отношений осуществляется в процессе анализа реальной жизненной обстановки, разрешения проблемных ситуаций, решения специально разработанных творческих задач и моделирования.
Познание чисел и освоение действий с числами — важнейший компонент содержания математического развития. Посредством числа выражаются количество и величины. Оперируя только числами, которые являются показателями количеств и величин объектов окружающей действительности, сравнивая их, увеличивая, уменьшая, можно делать выводы о точном состоянии объектов действительности.
Ребенок-дошкольник постигает сущность числа и действие с числами на протяжении длительного периода. Первоначально малыши выделяют один или два предмета, сравнивают практическим путем два множества. В этот же период или несколько позже дети овладевают счетом. Счет является способом определения численности множеств и способом их опосредованного сравнения. В процессе счета дети постигают число как показатель мощности множества. Сосчитывая разные по размеру, пространственному расположению предметы, дети приходят к пониманию независимости числа от других свойств предметов и совокупности в целом. Знакомятся с цифрами, знаками для обозначения чисел.
Решая арифметические задачи, дети осваивают специальные приемы вычислительной деятельности, например присчитывание и отсчитывание по единице.
На основе сложившегося логико-математического опыта ребенку 5—6 лет становятся доступными познание связей, зависимостей объектов, закономерностей, оценка различных состояний и преобразований. Ребенок определяет порядок следования; находит фигуру, пропущенную в ряду фигур; понимает и исправляет ошибки; поясняет неизменность или изменение состояния объектов, веществ; следует алгоритмам и составляет их самостоятельно.
2. Способы познания свойств и отношений в дошкольном возрасте
Основными способами познания таких свойств, как форма, размер и количество, которые ребенок осваивает уже в дошкольном возрасте, являются сравнение, сериация и классификация.
Познание формы, размера, количества в процессе сравнения
Сравнение — первый способ познания свойств и отношений, который осваивают дети дошкольного возраста и один из основных логических приемов познания внешнего мира.
Познание любого предмета начинается с того, что мы его отличаем от всех других и в то же время находим его сходство'с другими объектами. В процессе установления различий выявляются свойства отдельных предметов или же их групп. Каждая группа свойств связана со специфическими познавательными действиями. Так, установление сходства и различий по цвету является результатом зрительного обследования объектов, по форме — зрительного и осязательно-двигательного обследований, по размеру — зрительного, тактильного, осязательно-двигательного обследований и измерения, по количеству — зрительного и тактильного обследований счета.
В результате сравнения дети обнаруживают, что среди предметов, которые их окружают, есть разные, не похожие друг на друга, а есть одинаковые. Первоначально дети выделяют «сенсорные» различия, т. е. такие, которые делают предметы внешне не похожими друг на друга. Эта непохожесть может быть обусловлена цветом, формой, размером, пространственным расположением частей, вкусовыми, температурными, тактильными и другими свойствами. В процессе манипуляций с предметами дети открывают их свойства. Чем больше ребенок находит различий между объектами, тем больше свойств он обнаруживает и тем более дифференцированным становится его восприятие.
Постепенно ребенок открывает для себя, что не только отдельные предметы могут быть похожими или не похожими по каким-либо признакам друг на друга, но и одна группа предметов может быть похожей на другую или отличаться от нее. Так, подсолнухи, яблоки, помидоры имеют круглую форму, а огурцы и кабачки — овальную. В результате развивается способность выделять свойство группы и сравнивать между собой группы предметов. Такая способность является необходимым условием для перехода к познанию существенных признаков предметов и явлений. Ребенок стремится найти такой признак, благодаря которому один класс объектов отличается от другого (например, деревья — от кустов, автобусы — от троллейбусов, треугольники — от квадратов и т.д.).
Успешность познания количества и количественных отношений групп предметов зависит от овладения приемами сравнения.
Сравнивать предметы можно «на глаз». Дети первоначально прибегают к этому самому простому, но не всегда результативному приему сравнения. Более эффективными являются приемы непосредственного сравнения {наложение, приложение, соединение линиями) и опосредованного сравнения с помощью предмета-посредника. В основе этих приемов лежит установление взаимнооднозначного соответствия между элементами двух множеств. В результате практических или графических действий дети образуют пары из предметов разных групп. К более сложным и точным опосредованным приемам сравнения по количеству и размеру относятся счет и измерение условной меркой.
Одним из первых дети осваивают прием наложения. Этот прием позволяет обнаружить сходство и различие по количеству, размеру, форме, цвету и другим признакам. Для сравнения двух групп предметов по количеству каждый предмет одной группы дети поэлементно накладывают на предметы другой группы. Так, чтобы узнать, поровну ли конфет и печений, дети на каждое печенье накладывают по одной конфете. Для сравнения полосок по размеру (длине, ширине) одну полоску накладывают на другую, совмещая края полосок с одной стороны. Наложив одну геометрическую фигуру на другую (например, круг на квадрат), понимают, чем они отличаются друг от друга.
Приложение — более сложный прием сравнения. Сущность этого приема заключается в пространственном приближении сравниваемых предметов друг к другу (при этом изначально предметы пространственно разделены). В этом случае ребенку сложнее обнаружить сходство или различие между группами предметов.
В ситуациях, когда сравниваемые предметы нельзя пространственно приблизить друг к другу, используются приемы соединения их линиями или предметы-посредники. Соединение линиями применяется при сравнении групп предметов по количеству. Например, чтобы правильно ответить на вопрос: всем ли куклам сшили новые платья, нужно попарно соединить линиями рисунки кукол и платьев.
Сравнение с помощью предметов-посредников имеет место в случаях, когда вышеперечисленные приемы применить нельзя (сравниваемые предметы находятся на большом расстоянии и их нельзя перемещать). Для того чтобы узнать, одинаковые ли длины имеют стол воспитателя и детская кроватка в спальне, дети используют третий предмет — посредник (веревку, палку, ленту). Посредник должен быть длиннее обоих сравниваемых предметов или равным по длине большему предмету. Ребенок поочередно прикладывает предмет-посредник к сравниваемым протяженностям и фиксирует на нем карандашом или фломастером длину каждого предмета. Затем он сравнивает «перенесенные» на предмет — посредник длины и делает вывод о том, что длиннее (стол воспитателя или детская кровать). Аналогично с помощью предмета-посредника сравнивается емкость сосудов.
При сравнении совокупностей предметов по количеству в качестве посредника используется третья совокупность предметов. Для того чтобы узнать, чего на участке больше — деревьев или кустарников, дети возле каждого дерева кладут по игрушке. Затем собирают их и заново раскладывают по одной возле каждого кустарника. Лишние игрушки «говорят» о том, что деревьев больше; недостаток игрушек — о том, что кустарников больше. Если возле каждого кустарника лежит игрушка, лишних игрушек нет, значит, деревьев и кустарников поровну.
Самые сложные способы сравнения, которыми овладевают дети дошкольного возраста, — это счет и измерение. Они относятся к опосредованным способам сравнения. При их использовании выводы об отношениях между сравниваемыми объектами делаются на основе сравнения чисел, выражающих размер или количество объектов. Например, чтобы узнать, чего больше — яблок или груш, дети посредством счета определяют число яблок (например, 8 штук) и число груш (7 штук). Сравнивая полученные в результате счета числа (8 и 7), они устанавливают, что яблок больше на одно. Аналогичным образом дети определяют отношения между предметами по конкретным величинам с помощью измерения. Вывод о том, какой объект длиннее, короче, выше, ниже, тяжелее, легче и т. д., дети делают, сравнивая числа, которые выражают результаты измерений.
Таким образом, используя разные приемы сравнения, дошкольники познают свойства (форму, количество, размер), а также отношения равенства, подобия и порядка.
3. Сериация как способ познания размера, количества, чисел.
Сериация (упорядочивание множества) осуществляется на основе выявления некоторого признака предметов и их распределения в соответствии с этим признаком. Сериационные ряды строятся в соответствии с правилами. Правило определяет, который элемент из двух (произвольно взятых) предшествует другому элементу. Основными характеристиками упорядоченного ряда являются неизменность и равномерность направления нарастания (или убывания значения) признака, на основе которого строится ряд.
Например, если из двух объектов меньший всегда должен предшествовать большему, то множество упорядочивается в направлении от самого меньшего к самому большому элементу. Так, ленты раскладывают от самой короткой к самой длинной, чашки расставляют от самой низкой к самой высокой и т. д.
Сериация как способ познания свойств и отношений позволяет:
• выявить отношения порядка;
• установить последовательные взаимосвязи: каждый следующий объект больше предыдущего, каждый предыдущий — меньше следующего (или наоборот: каждый следующий объект меньше предыдущего, каждый предыдущий — больше следующего);
• установить взаимнообратные отношения: любой объект упорядоченного ряда больше предыдущего и меньше следующего (любой объект упорядоченного ряда меньше предыдущего и больше следующего);
• открыть закономерности следования и порядка.
Дети дошкольного возраста осваивают сериацию в процессе выстраивания по порядку конкретных предметов. Исходным условием для овладения сериацией является освоенность сравнения.
Для выполнения сериации необходимо:
• выявить основание сериации, т. е. выделить признак (конкретную величину), по которому необходимо упорядочить предметы (размер, длина, масса и пр.);
• определить направление ряда (по нарастанию или по убыванию величины);
• выбрать из всех имеющихся предметов (в соответствий с направлением ряда) начальный элемент (самый маленький или самый большой);
• для продолжения ряда каждый раз из оставшихся предметов выбирать самый маленький (большой).
Усложнение сериационных заданий обеспечивается путем:
• постепенного увеличения числа объектов, которые необходимо упорядочить;
• уменьшения величинных различий между соседними элементами ряда;
• увеличением числа различительных признаков в предметах сериации (что способствует развитию умения абстрагировать свойства не только от самих предметов, но и от других свойств).
В практике используются различные сериационные дидактические материалы: рамки-вкладыши, игрушки-вкладыши (матрешки, кубы, бочонки и др.), сериационные наборы М. Монтессори для упорядочивания предметов по разным признакам (цвету, запаху, размеру, различным протяженностям и др.).
Палочки Кюизенера (цветные числа) и цветные полоски, построенные по такому же принципу, различаются не только длиной, но и цветом. При этом все палочки одинаковой длины имеют одинаковый цвет. Количество палочек в наборе таково, что позволяет строить два разнонаправленных ряда: один — по нарастанию длины, другой — по убыванию. Чтобы построить ряд, ребенку всегда необходимо абстрагировать длину от более сильного в плане непосредственного восприятия свойства — цвета палочки.
Дети осваивают сериацию через систему следующих игровых упражнений:
• построение сериационного ряда по образцу;
• продолжение начатого ряда;
• построение сериационных рядов по правилу с заданными крайними элементами;
• построение рядов по правилу от начальной точки;
• построение по правилу с самостоятельным определением начальной точки ряда;
• построение ряда от любого элемента;
• поиск пропущенных элементов ряда.
Первые упражнения (первый шаг в освоении сериации) должны помочь детям выделить основание сериации, т. е. тот признак, по которому можно упорядочивать, и осознать неизменность направления нарастания (или убывания) значения признака предметов. Материал для этих упражнений может быть самым разнообразным, но при подборе предметов должны соблюдаться следующие условия:
• предметы сначала различаются только упорядочиваемыми свойствами (высотой, длиной, яркостью цвета, размером и т. д.), затем — дополнительными свойствами (разные по высоте и цвету, по цвету и форме);
• количество предметов равно трем.
Первые сериационные задания дети выполняют по образцу, которым является готовый сериационный ряд. Образец демонстрирует, значение какого признака и в каком направлении меняется. Ребенку необходимо выделить этот признак, направление его изменения и соответственно построить такой же ряд из других предметов. В рамках-вкладышах образцом сериационного ряда являются отверстия для вкладывания предметов (квадратов разного размера, цилиндров разного диаметра, силуэтов елок разной высоты и др.).
Предметы, которые упорядочивает сам ребенок, должны обязательно отличаться от предметов в образце. К примеру, если образец — ряд матрешек разного размера, то ребенок упорядочивает новые платья для них; если образец — ряд чашек, то ребенок упорядочивает блюдца и т. д. Такой подбор предметов способствует абстрагированию признака (основания сериации) от самих предметов.
Сначала дети строят сериационные ряды по нарастанию признака. В первую очередь используются дидактические наборы без дополнительных различительных признаков (рамки-вкладыши, игрушки-вкладыши, предметы быта, игрушки, фигуры), затем — с дополнительными признаками различия (палочки Кюизенера, цветные полоски и др.). По ходу совместных игровых упражнений взрослый побуждает детей рассказывать о порядке действий. Какую полоску нужно положить сначала, чтобы получилась лесенка (ответ — самую короткую)? Какая полоска будет следующей (ответ — немного длиннее)? Какая полоска будет последней (ответ — самая длинная)?
В следующих упражнениях (второй шаг в освоении сериации) число упорядочиваемых предметов увеличивается до пяти.
Дети строят ряды как по нарастанию величины, так и по ее убыванию. Используются разнообразные упражнения на построение рядов: по образцу, с заданными крайними элементами, от заданной начальной точки (первый предмет ряда находится перед детьми), продолжение начатого ряда. Взрослый помогает детям усвоить правило выбора предмета для построения ряда: каждый раз из оставшихся предметов нужно выбирать самый маленький (короткий, низкий, тонкий и т. п.) или самый большой (длинный, высокий, толстый и т. п.).
В упражнениях на построение рядов с заданными крайними точками обозначается только начало и конец ряда. Например: лесенка, в которой только две дощечки: первая, самая длинная, и последняя, самая короткая; первый, самый высокий, и последний, самый низкий, ребенок в ряду; самая маленькая и самая большая планета и др. Дети определяют направление ряда и достраивают его.
Затем дети строят ряды по правилу от заданной начальной точки, которая может находиться и в середине ряда. В таких упражнениях ребенку сложнее выделить направление ряда. Выполнение подобных упражнений позволяет детям успешно перейти к самостоятельному построению всего ряда, т. е. самостоятельно определить направление ряда, правильно найти первый предмет ряда и построить его до конца.
Дети исправляют ошибки как в готовых реальных рядах, так и в нарисованных картинках. В таких рядах отдельные предметы находятся не на своем месте. Задача ребенка — обнаружить ошибку и исправить ряд. В результате подобных упражнений дети прочнее осваивают свойства ряда: неизменность направления и равномерность нарастания (убывания) ряда.
Дети анализируют как готовые, так и самостоятельно построенные ряды. Например, в построенных рядах дети находят все предметы, которые меньше указанного предмета, и все, которые больше его. Такие задания помогают дошкольникам подготовиться к построению рядов от любых их элементов.
В дальнейшем дети упорядочивают до 10 и более предметов в ряду (третий шаг в освоении сериации). Строят сериационные ряды из палочек Кюизенера и цветных полосок как по нарастанию, так и по убыванию значений одного и более признаков. Каждый построенный ряд анализируют с целью выявления относительности величины. Для этого взрослый предлагает ребенку выбрать любой предмет ряда и сравнить его с предметами, расположенными слева и справа.
На этом этапе дети упорядочивают предметы от любого элемента ряда, что является очень сложной задачей. Для ее решения требуется:
• выделить сразу два направления построения ряда (одну часть ряда нужно строить по нарастанию признака, другую — по его убыванию);
• разделить все предметы на две группы (те, которые больше, чем образец, и те, которые меньше образца);
• построить одну часть ряда (по нарастанию или же по убыванию значения признака), затем — другую (в обратном направлении изменения значения признака).
В процессе таких упражнений развивается способность «двигаться по ряду» в двух направлениях. В результате ребенок лучше осознает относительность признака и выделяет транзитивность как свойство отношения порядка (если розовая палочка длиннее белой, а синяя длиннее розовой, то синяя длиннее белой).
Усложняются упражнения на исправление неправильных рядов реальных предметов или их изображений на картинках. Теперь в неправильных рядах единичные элементы пропущены в разных местах ряда или отсутствуют 2—3 элемента, непосредственно следующие друг за другом. Дети исправляют ошибки в рядах: находят пропущенные элементы.
С помощью полочек Кюизенера дети начинают упорядочивать числа. Величина каждого числа наглядно представлена длиной палочки (самая короткая (1 см) — число 1, длиннее (2 см) — число 2, еще длиннее (3 см) — число 3 и т. д.). Цвет также выполняет функцию обозначения конкретного числа (белый — число 1, розовый — число 2, голубой — число 3, красный — число 4 и т. д.).
Дети исследуют упорядоченные ряды цветных палочек и устанавливают, что:
• каждая следующая палочка длиннее предшествующей на одну белую палочку;
• каждая предшествующая палочка короче следующей за ней на одну белую палочку.
В результате таких действий формируется представление о том, что каждое следующее число в натуральном ряду чисел на 1 больше предшествующего и, наоборот, каждое предшествующее число на 1 меньше непосредственно следующего за ним числа.
Исправления деформированных рядов палочек Кюизенера (с перестановкой рядом стоящих палочек, с пропущенными палочками) развивают у детей представление о числе.
В результате последовательных разнообразных упражнений дошкольники осваивают сериацию как способ познания свойств (размера, количества, чисел). С помощью этого способа они открывают отношение порядка, познают свойства упорядоченного множества, упорядочивают объекты по разным величинам, готовятся к решению сложных задач, в основе которых лежит отношение порядка.
4. Классификация как способ познания свойств и отношений
Классификация — один из важнейших способов познания окружающей действительности. В ее основе лежит разбиение. Разбиение является логическим действием, суть которого состоит в разбивке непустого множества на непересекающиеся и полностью покрывающие его подмножества. Образованные подмножества именуются классами. При этом в каждый класс входит хотя бы один элемент множества и ни один из элементов множества не может входить сразу в два или более классов. Классификация — распределение элементов множества по классам. В процессе классификации выявляются и устанавливаются отношения эквивалентности по определенным свойствам. Классификация позволяет познать общие характеристические свойства классов и отношения между классами.
Познание свойств групп и отношений между группами в процессе классификации предметов по признакам
Классификация по признакам — сложное умственное действие, которое включает:
• выделение оснований классификации (общих признаков предметов), по которым будет производиться разбиение;
• распределение объектов с разными свойствами в разные классы;
• объединение объектов с одинаковыми (тождественными) свойствами в одно целое (класс).
Первым шагом в освоении детьми классификации является образование групп предметов, т. е. выделение из совокупности предметов тех, которые обладают одинаковыми свойствами, и объединение их в группу. Например, из множества геометрических фигур дети выбирают все круглые фигуры (и образуют из них группу), из множества игрушек — все маленькие игрушки и т. д. В процессе разнообразных упражнений по образованию групп предметов на основе разных свойств и называния общего свойства группы у детей развивается способность к обобщению. Сначала дети осваивают умение образовывать группы на основе одного свойства (все желтые фигурки), затем на основе двух, трех и более свойств (все красные квадратные фигуры, все большие треугольные синие фигуры и т. д.). Чем больше отличительных свойств имеют объекты, тем больше активизируется способность ребенка к абстрагированию, т. е. к отличению значимых для решения задачи свойств от остальных. Чтобы выделить из логических блоков группу по одному свойству, ребенок должен отличить это свойство от остальных трех. Так, чтобы образовать группу всех квадратных блоков, ему нужно абстрагировать форму от цвета, размера и толщины блока и собрать вместе все квадраты (синие, желтые, красные, большие и маленькие, толстые и тонкие). В результате упражнений на образование групп дети осваивают умение объединять вместе объекты с одинаковыми свойствами и выделять общее свойство группы.
Вторым шагом в освоении детьми классификации является распределение предметов с разными свойствами в разные группы. В игровых упражнениях и игровых обучающих ситуациях взрослый задает основание и указывает общие свойства каждой группы. Например, перед детьми — три ведерка (красное, желтое, синее). Нужно разложить все игрушки по цвету: в красное ведерко собрать все красные игрушки, в желтое — все желтые, в синее — все синие. В другом игровом упражнении детям предлагают 3 большие фигуры, серединку цветка (круг, квадрат, треугольник) и много таких же маленьких фигур — лепестков. Нужно собрать цветы — вокруг каждой большой фигуры (серединки цветка) выложить такие же по форме маленькие фигуры. В приведенных упражнениях общие свойства каждой группы обозначаются с помощью цвета ведер и форм больших фигур. Общее свойство каждой группы взрослый может обозначить по-разному, например словом или знаком. При выполнении этих упражнений важно, чтобы дети называли не только общие свойства групп (все круглые, все квадратные, все треугольные), но и основания распределения предметов по группам (разложили по форме, по размеру и т. д.), а также число полученных групп (разделили фигуры по форме и получили 3 группы: круглые, квадратные и треугольные фигуры).
В ходе таких упражнений дети усваивают, что любые два объекта одной группы одинаковы по общему свойству, а любые два предмета из разных групп — различны.
Следующим (третьим) шагом в освоении классификации являются упражнения, которые помогают детям самостоятельно обнаруживать общие свойства классов. Задание, которое получают дети, состоит в том, чтобы разделить (разложить) все предметы по указанному признаку (цвету, длине, толщине и т. д.), определить количество полученных групп, назвать общее свойство каждой группы.
При выполнении таких упражнений полезными окажутся логические блоки Дьенеша — наборы предметов разных цветов и форм. Например, в игровом упражнении «Засели домик» ребенок получает карточку-домик. На ней нужно «расселить» блоки так, чтобы в каждой «комнате» все блоки были одинаковыми по цвету; затем назвать, какие блоки поселились в каждой «комнате» и сколько занято комнат. Эти же блоки в других упражнениях можно разбивать по другим основаниям (по форме, по размеру, по толщине). При каждом новом основании разбиения меняются общие (характеристические) свойства классов.
Четвертый шаг в освоении детьми классификации — упражнения, которые помогают ребенку самостоятельно найти основание классификации. Задача, стоящая перед ребенком, заключается в том, чтобы разделить любую совокупность так, чтобы вместе оказались все одинаковые предметы. Например, взрослый предлагает детям несколько домиков для «расселения» блоков.
Каждый ребенок должен сначала решить, как он «расселит» блоки, а затем выбрать тот домик, который для этого подходит. Условия «расселения»: все блоки должны попасть в дом; в каждой комнате должны «жить» только одинаковые блоки; в доме не должно быть пустых комнат.
Таким образом, в процессе освоения классификации ребенок движется от умения объединять вместе предметы с одинаковыми свойствами и выделять общие свойства группы к умениям распределять предметы с разными свойствами в разные группы; разбивать совокупность на группы по заданному основанию классификации; выделять основание классификации.
Упражнения на классификацию дети могут выполнять на разном предметном материале (игрушки, предметы быта, природный материал, геометрические фигуры и пр.). Но не всегда, к сожалению, такой материал может включать в действие абстрагирование одних свойств от других. В то же время любая задача на классификацию с логическими блоками требует от ребенка умения «абстрагировать» одни свойства от других. Если основанием классификации является форма, то нужно ее отвлечь от цвета, размера, толщины блоков; если же размер основанием является, не нужно обращать внимание на форму, цвет, толщину блоков. Логические блоки и материалы, сконструированные по их типу, являются незаменимыми в освоении детьми классификации — важнейшего способа познания свойств и отношений.
Степень сложности задач на классификацию, а следовательно, их развивающий потенциал зависит:
• от количества признаков, по которым осуществляется группировка (один, два, три); чем больше признаков, тем сложнее задача;
• от числа различительных свойств в каждом предмете той совокупности, которая разбивается на группы; чем больше различительных свойств в предметах, тем труднее абстрагировать одни свойства от других.
В результате классификации по общим признакам предметов дети познают общие свойства классов, отношения между частью и целым, отношения включения между классами.
Классификация по совместимым свойствам как способ развития предпосылок логико-математического мышления детей старшего дошкольного возраста
Классификация по совместимым свойствам является доступным способом развития у старших дошкольников способности к логико-математическому мышлению. В основе такой классификации лежит разбиение множеств по совместимым свойствам, т. е. таким свойствам, которые одновременно присутствуют в объекте. Доступным для старших дошкольников данный вид классификации делает специально сконструированный для этих целей дидактический материал (который мы уже упоминали ранее) — логические блоки. Набор логических блоков обеспечивает выполнение классификации по совместимым свойствам в плане внешних предметных действий группировки, т. е. распределения предметов по группам. Процесс и результаты группировки логических блоков отражают характер протекания умственного действия классификации.
Выполнение классификации по совместимым свойствам всегда требует устойчивого абстрагирования заданных свойств, анализа и объединения объектов в группы на основе наличия (или отсутствия) этих свойств в каждом из объектов классификации. Анализ свойств осуществляется с помощью логических операций «не» (отрицание), «и» (конъюнкция), «или» (дизъюнкция). Так, чтобы классифицировать логические блоки на основе свойств быть круглым и быть желтым, необходимо:
• провести анализ каждого блока (круглый или не круглый, желтый или не желтый);
• обнаружить все возможные варианты сочетания этих свойств (круглые и желтые, круглые и не желтые, желтые и не круглые, не желтые и не круглые) объединить (сгруппировать) вместе все круглые и желтые блоки, все круглые и не желтые блоки, все желтые и не круглые блоки, все не желтые и не круглые. Эффективным средством развития у детей способности классифицировать объекты по совместимым свойствам являются игры с блоками и обручами, разработанные профессором А. А. Столяром. В современной практике логико-математического развития дошкольников успешно применяются «жизненные» логические материалы, сконструированные по принципу логических блоков (наборы бабочек, листьев, цифр и др.), и разнообразные варианты методически реконструированных игр с обручами.
Освоение классификации по совместимым свойствам осуществляется поэтапно. На первом этапе дети разбивают множество на классы на основе одного свойства. Для выполнения этого действия ребенку необходимо вычленить обозначенное свойство в предметах классификации; абстрагировать его от других свойств; установить, присутствует ли указанное свойство в каждом предмете; объединить в одну группу все предметы, обладающие указанным свойством, в другую — все предметы, не имеющие данного свойства. Важнейший результат освоения детьми классификации по одному свойству — развитие представлений о логической операции отрицания.
Освоение детьми классификации по одному свойству происходит в игровых упражнениях с одним обручем. Для этого на полу размещается обруч.
Предварительно определяются область, которая находится внутри обруча, и место, которое не попадает в обруч (за обручем, вне обруча). Дети получают, например, такое задание: разложить все блоки на полу так, чтобы в обруче оказались все красные блоки.
Выполнение такого предметного действия для детей старшего дошкольного возраста не составляет труда. Дети с легкостью называют, какие блоки оказались в обруче (все красные). Однако сложнее всего обозначить общее свойство тех блоков, которые оказались за обручем, так как именно здесь требуется включение логической операции отрицания. Общее свойство всех блоков, оказавшихся вне обруча (все не красные), не имеет сенсорного образца (эталона). Более того, в эту группу могли бы попасть блоки любого другого цвета, кроме красного. Встав перед необходимостью назвать все блоки за обручем одним словом, дети находят для этого разные, но не точные слова (другие, разные, всякие). Решение задачи оказывается невозможным на уровне оперирования образами предметов или сенсорными эталонами свойств. Самостоятельный, достаточно длительный и сложный поиск правильного слова для характеристики группы блоков, оказавшихся за обручем, связан с переходом ребенка на логический уровень мышления. Взрослый помогает сделать этот шаг с помощью вопросов «Какие блоки попали в обруч?», «Есть ли среди блоков за обручем хотя бы один красный?», «Чем они все отличаются от тех, что находятся в обруче?»
Показателем перехода на логический уровень мышления является включенная в действие логическая операция отрицания. Ребенок самостоятельно с ее помощью указывает общее свойство блоков за обручем (не красные, не крупные, не синие и т.д.). В каждом новом игровом упражнении обязательно меняется свойство — основание классификации (квадратные, желтые, треугольные, круглые, синие и т.д.).
Обруч и блоки в игровых упражнениях могут образно «опредмечиваться». Так, обруч может быть планетой, блоки — обитателями вселенной; обруч — морем, блоки — рыбами; обруч — блюдом, блоки — конфетами; обруч — машиной, блоки — строительным материалом. В соответствии с игровым действием обруч можно заменить другим предметом (машинкой, игрушкой, платком и пр.). Образное «опредмечивание» материала уместно при слабо выраженной познавательной мотивации детей и способствует активизации мыслительной деятельности.
Технология организации игровых упражнений на освоение классификации по одному свойству включает следующие шаги:
1) предъявление задачи (разложить все блоки так, чтобы...);
2) характеристика каждого образованного класса.
На втором этапе дети осваивают классификацию по двум совместимым свойствам. Варианты совместимых свойств (оснований классификации) могут быть самыми разными: красные квадратные, синие круглые, прямоугольные красные, желтые большие, треугольные толстые и др. Одно из эффективных средств освоения детьми классификации по совместимым свойствам — игры с двумя обручами и блоками.
На полу — два разноцветных обруча, например синий (слева) и красный (справа).
Вначале дети должны познакомиться с месторасположением и названием всех областей, которые образуются в результате такого расположения обручей (место внутри обоих обручей, место внутри синего, но вне красного обруча; место внутри красного, но вне синего обруча; место вне обоих обручей). Затем получают задание, например разложить все блоки так, чтобы в синий обруч попали все синие блоки, в красный — все круглые.
Для решения этой сложной задачи (выполнение классификации по двум свойствам) ребенку необходимо:
• абстрагировать два свойства (быть синим, быть круглым);
• объединить вместе все синие и круглые блоки, все синие и не круглые, все круглые и не синие, все не синие и не круглые. Процесс выполнения практических действий детьми наглядно демонстрирует включенность логических операций в решение задачи. Логические операции бездействуют, если дети сначала выбирают все синие блоки и помещают их в синий обруч, затем из оставшихся выбирают все круглые и помещают в красный обруч. При этом место внутри обоих обручей остается пустым. Если задействован логический анализ, ребенок поочередно берет блоки, смотрит на них и определяет, каковы они с точки зрения заданных свойств.
Первоначально некоторые дети решают задачи на классификацию по совместимым свойствам на дологическом уровне. Основной путь помощи этим детям — предоставление им возможности самим увидеть свои ошибки и самим их исправить. Процесс самостоятельного поиска направляется взрослым. После того как дети разложили все блоки в обручи, а место внутри обоих обручей осталось пустым, взрослый предлагает проверить:
• все ли синие блоки попали в синий обруч (и исправить ошибки);
• все ли круглые блоки попали в красный обруч (и исправить ошибки).
Дети быстро находят «ошибочные» блоки и перекладывают их в другую группу. При этом место внутри обручей остается пустым. В результате многократного перекладывания дети обнаруживают, что таким образом нельзя исправить ситуацию, и находят самое подходящее место для «ошибочных» блоков — внутри обоих обручей.
Подтверждением действенности логических операций у детей является умение выделить и назвать общее (характеристическое) свойство образованных классов. С этой целью взрослый предлагает детям назвать каждую группу блоков так, чтобы их нельзя было спутать с другими:
• внутри обоих обручей: все синие и круглые блоки;
• внутри синего, но вне красного: все синие и не красные блоки;
• внутри красного и вне синего: все круглые и не синие блоки;
• за обручами (вне обручей): все не круглые и не синие блоки. Включению в действие логических операций «не», «и», «или» в упражнениях с обручами способствуют также вопросы:
• каким должен быть блок, чтобы попасть сразу в оба обруча? (Синим и круглым.);
• какими должны быть блоки, чтобы попасть хотя бы в один из обручей? (Синими или круглыми.)
Технология организации игровых упражнений с обручами на освоение классификации по двум совместимым свойствам включает следующие шаги:
Подготовительный: выделение и называние всех областей, которые образуются при пересечении двух обручей Основные:
1) предъявление задачи (разложить все блоки так, чтобы...);
2) проверка решения задачи;
3) характеристика каждого образованного класса (формулировка их характеристических свойств).
Как и на предыдущем этапе, здесь возможно образное «опредмечивание» обручей и блоков, использование вместо обручей других предметов. Благодаря этому создаются разнообразные игровые ситуации, для разрешения которых дети должны выполнить классификацию по совместимым свойствам. Например, разделить конфеты между Винни-Пухом и Пятачком так, чтобы Пуху достались все желтые конфеты, а Пятачку — все прямоугольные конфеты; разделить строительный материал для постройки дома между Ниф-Нифом и Наф-Нафом так, чтобы у Ниф-Нифа были все квадратные блоки, а у Наф-Нафа — все толстые. В каждом новом игровом упражнении задается новая пара совместимых свойств. В процессе классификации дети продолжают познавать отношения между классами.
Таким образом, в дошкольном возрасте дети осваивают важнейшие способы познания формы, размера и количества: сравнение, сериацию, классификацию. Сравнение — самый первый способ познания свойств и отношений, которым овладевают дети, и один из основных логических приемов познания мира. Он позволяет ребенку обнаружить сходство или различие как между отдельными предметами, так и между группами предметов по форме, размеру, количеству, пространственному расположению.
В дошкольном возрасте дети осваивают с помощью взрослого сначала непосредственные (наложение, приложение, соединение линиями), а затем и опосредованные (с помощью предмета-посредника, счета, измерения) приемы сравнения предметов по размеру и групп предметов — по количеству.
Успешное овладение сравнением является базой для освоения нового способа познания свойств и отношений — сериации. В процессе сериации дошкольники открывают для себя отношения порядка, познают свойства упорядоченного множества (неизменность и равномерность нарастания или убывания величины). Овладение сериацией — основа понимания отрезка натурального ряда чисел как упорядоченного множества.
Выполняя разные виды классификации (по признакам и по совместимым свойствам), дошкольники не только познают свойства и отношения, но и развивают свои аналитические способности, овладевают умением применять простые логические операции.
Способность к абстрагированию — важнейшая особенность логико-математического мышления. Она успешно развивается в дошкольном возрасте в процессе сравнения, упорядочивания, классификации. Однако для ее развития требуется тщательный отбор дидактических материалов: логические блоки Дьенеша, цветные палочки Кюизенера и другие аналогичные материалы.
Дата добавления: 2017-08-01; просмотров: 5919;