Доказательство формулы .

Запишем производную по определению.

Но тут есть сдвиг на и по u, и по v. Добавим и вычтем такое слагаемое, в котором сдвиг по одной функции есть, а по второй нет:

теперь слагаемых стало 4, но зато их можно сгруппировать по два, и даже разбить на две дроби, так, что дельта прибавляется только на одном из мест.

Теперь можно вынести тот множитель, который одинаков в каждой разности:

Видно, то, что осталось в дробях, это и есть производные для u или v соответственно, т.е. в итоге:

. Итак, .

Докажем формулу .

Запишем по определению: .

В том выражении, которое есть в числителе, приведём к общему знаменателю.

 

= =

= .

Аналогично как в прошлом случае, добавим и вычтем слагаемое, чтобы получилось 4 слагаемых а не два, и чтобы в каждой паре был сдвиг только по одной из функций. Можно для этой цели прибавить и отнять, например, .

=

Если во втором пределе переставить два слагаемых и при этом, конечно, добавить знак минус, то часть, содержащая дельта-икс, получится раньше, что и приведёт к записи точь в точь, как в определении производной для v.

=

= .

 

С помощью правил дифференцирования решим несколько примеров.

Пример.Найти производную тангенса (мы фактически докажем одну из формул таблицы интегралов).

= = = = = .

Итак, = .

Пример. Найти . Примерим формулу дифференцирования композиции.

= = .








Дата добавления: 2016-12-26; просмотров: 688;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.