Взаимосвязь понятий «дифференцируемость» и «производная».

 

Теорема. Если f есть функция одной переменной, т.е. , то существует конечная производная в точке функция дифференцируема в точке .

 

Доказательство. Необходимость.

Пусть существует производная в точке, . Докажем, что функция дифференцируема. Если равен числу , то сама эта функция, которая под знаком предела, представима в виде: это число + какая-то бесконечно малая. .

Если домножить на то . Здесь обозначим , причём эта

более высокого порядка, ведь на уже существующую бесконечно-малую домножается ещё одна, а именно , т.е. порядок возрастает на 1. Получили . Определение дифференцируемости выполняется.

Достаточность. Пусть f дифференцируема. Выполняется равенство . Разделим его на : получим . Перейдём к пределу. .

Но ведь - бесконечно малая более высокого порядка, то есть там содержится не в первой, а какой-то более высокой степени. Тогда . Осталось . Заодно доказали, что константа А в этом равенстве - это и есть производная в точке, то есть .

Замечание. В одном из прошлых примеров, а именно , элемент это и есть та самая бесконечно малая более высокого порядка . Здесь она содержит 2 и 3 степени, и как видно, даже после деления на она станет , то есть содержит в каждом слагаемом хоть какие-то степени от , и поэтому стремится к 0.

Лекция № 12. 25. 11. 2016

Основные правила дифференцирования.

Сумма и разность: .

Произведение: . Частное: .

Композиция: .

 

Запомнить можно так: для произведения между и знак плюс, а для частного минус. Но в формуле частного есть ещё лишнее v2 в знаменателе. Почему же производная произведения это не просто ? И откуда появляется ещё и v2 в знаменателе для частного? Эти формулы вовсе не являются очевидными. Сейчас докажем формулы для произведения и частного.








Дата добавления: 2016-12-26; просмотров: 594;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.