Линейный оператор. Матрица линейного оператора.
Пусть W и V линейные пространства над числовым полем P. Однозначное отображение линейного пространства W в линейное пространство V называется линейным оператором, если для любых векторов x,y из W и чисел из поля P справедливо равенство .
Примеры линейных операторов.
- Линейная функция
- Дифференцирование функций
- Проекция вектора
- Пседообратная матрица
Матрица линейного оператора.
Пусть базис W. Разложим вектор x из W по этому базису и найдем его образ . Из полученного равенства видно, что образ вектора определяется координатами вектора и значениями линейного оператора на базисных векторах. Обозначим через базис V. Координаты вектора x из W в базисе обозначим через , а координаты вектора y из V в базисе обозначим через . Перейдем в последнем равенстве от равенства векторов к равенству их координат , которое можно записать используя матричное умножение следующим образом . Матрица называется матрицей линейного оператора и обозначается .
Дата добавления: 2016-05-25; просмотров: 896;