ЛАМИНАРНОЕ ТЕЧЕНИЕ НЕСЖИМАЕМОЙ ЖИДКОСТИ В КРУГЛОЙ ТРУБЕ

 

Рассмотрим установившееся ламинарное течение несжимаемой жидкости в круглой трубе, линиями тока которого будут прямые, параллельные оси и образующим стенки трубы. Направим ось ОХ по оси трубы, так что поперечное сечение трубы лежит в плоскости . Тогда и остается лишь одна отличная от нуля компонента скорости . Из уравнения неразрывности (5.4) следует, что

 

,

 

т. е. компонента не зависит от , а является функцией лишь и . Однако вследствие радиальной симметрии течения функция определяется не самими координатами и , а лишь их комбинацией , являющейся расстоянием точки сечения трубы от ее оси: .

Связь касательного напряжения между слоями жидкости и разностью скоростей этих слоев, рассчитанной на единицу расстояния между ними (градиентом скорости) в общем случае можно записать как

 

. (7.1)

 

Для различных жидкостей эта связь может иметь различный вид, однако, отметим два частных случая, имеющих, однако, широкое применение в практике.

1. Функция есть линейная функция своего аргумента, причем :

 

. (7.2)

 

Жидкость, удовлетворяющую реологическому соотношению (7.2), называют ньютоновской вязкой жидкостью, а коэффициент пропорциональности - динамической вязкостью этой жидкости. Очевидно, что размерность , причем в системе СИ единицей измерения динамической вязкости служит величина , называемая одним Пуазом: .

Условие означает, что при отсутствии скорости движения слоев жидкости друг относительно друга (скорости сдвига) касательное напряжение между слоями равно нулю.

Поскольку слои жидкости, расположенные ближе к оси трубы, движутся быстрей, чем слои жидкости, расположенные дальше от нее, , следовательно, , т.е. медленные слои тормозят быстрые. Если вместо касательного напряжения ввести его модуль , который в рассматриваемом случае равен , то формула (7.2) приобретет вид:

 

(7.3)

 

2. Функция есть степенная функция своего аргумента. Говоря точней, модуль касательного напряжения является степенной функцией модуля скорости сдвига , причем, так же как и в предыдущем случае, при . Иными словами, имеет место соотношение

 

, (7.4)

 

а само реологическое уравнение (7.1) может быть представлено в виде:

 

. (7.5)

 

Такая запись показывает, что модуль касательного напряжения дается формулой (7.4), а его знак совпадает со знаком производной .

Жидкость, удовлетворяющую реологическому соотношению (7.4), называют неньютоновской степенной жидкостьюили степенной жидкостью Освальда. Коэффициент , входящий в это уравнение, называют косистентностью жидкости, а показателем степени: если , то жидкость называют псевдопластичной, если же дилатантной. Размерность консистентности равна, очевидно, . При степенная жидкость является ньютоновской вязкой жидкостью, причем коэффициент .

 








Дата добавления: 2016-05-16; просмотров: 571;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.