Диалектика математики 5 страница
Потенциальная бесконечность многоплотностна (многомерна). Каждая мерность связана со всеми свойствами тел, образующих пространство, и обусловлена соответствующей плотностью. Введение методом Римана большого количества взаимно независимых мерностей возможно только мысленно и только в актуальном пространстве. Оно не отображает качественных различий в протяженностях и приводит к разрушению взаимосвязи между свойствами пространства.
При переходе к геометрии потенциальной бесконечности следует учитывать, что сложившееся понимание первичных элементов: точки, прямой, плоскости вряд ли применимо в рамках потенциальной бесконечности. Так, точка в потенциальной геометрии представляет собой бесконечную внутрь и отграниченную от внешнего пространства поверхностью сферу определенного ранга (короче - точка это сфера, не имеющая центра). Ее ранг не сопоставим с рангом окружающего пространства. Напряженные точки одного ранга при сближении «отталкиваются», а при раздвигании «притягиваются». То есть обладают физическими свойствами. Поэтому точки одного ранга не могут «выстраиваться» в линию «впритык». Обязательно между ними должно оставаться опять же несоизмеримое по рангу пространство, содержащее нейтральную зону одинаковой с другой точкой напряженности. Точки же различных рангов несовместимы и не могут «соседствовать» друг с другом. Движение точек (в смысле перемещения) сопровождается их качественным и количественным изменениями, а параметры движения определяются напряженностью внешнего поля. Метричность, в смысле существования жесткого неизменного во всех областях пространства единого эталонного метра, отсутствует (следствие анизотропности пространства). Движение твердого тела (метра) в любом направлении (кроме эквипотенциальной поверхности) сопровождается изменением его объема, и, следовательно, протяженности (конечно в сопоставлении со статическим состоянием). Геометрическая линия в потенциальном пространстве - условность. Она может быть проведена от поверхности одной точки до поверхности другой. За этой поверхностью линия стремится в бесконечность к недостижимому центру точки, и потому ее длина тоже бесконечна, а точка - всегда разрыв линии. Линией можно полагать след траектории движущейся точки. А поскольку точка в анизотропном пространстве не может двигаться с постоянной скоростью, то «искривление» линии и будет отражать эту реальность.
Движение и самодвижение тел-точек их силовая деформация (динамика) такая же равноправная категория геометрии, как и покой. Однако отображать движение в геометрии сложнее еще и потому, что именно покой как статичность - основная категория, определяющая структуру существующих геометрических соотношений (инвариантов) и одновременно динамичность как инвариантное отображение их бесконечности.
Таким образом, представление актуальной и потенциальной бесконечности имеет как общие свойства, связанные с самой бесконечностью, с ее неопределенностью, и безграничностью, так и различные свойства, характеризуемые для актуальности статичностью бесконечности, а для потенциальности - напряженностью, инвариантным «движением», становлением. Так, актуальную бесконечность наиболее полно отображает евклидова геометрия, а основные положения геометрии, отражающей потенциальную бесконечность, будут изложены ниже. Все остальные геометрии включают в себя в различных пропорциях свойства как актуальной, так и потенциальной бесконечности.
Однако оба вида бесконечности, - актуальная и потенциальная обладают одним общим качеством, которое, как это ни удивительно, до сих пор пропущено в философской литературе, делая ущербным и односторонним само понимание термина «бесконечность».
Рассмотрим, что же, в соответствии с диалектической логикой, означает само понятие «бесконечность», исходя не из понимания безграничной протяженности или пространственной распространенности, а из того, какой термин отображает противоположное понятие.
Общепринято и в учебниках по философии зафиксировано, что антиподом понятия «бесконечное» является понятие «конечное». Но понятие «конечное» предполагает существование у бесконечного «начала». Однако бесконечное потому и бесконечное, что не имеет ни начала, ни конца. Да и само «конечное» существует не потому, что имеется его «антипод» бесконечное, а потому, что существует более явный антипод «начальное». Понятие «конечное» антипод понятию «начальное», по структуре самой логики. Там, где появляется «конечное» почти всегда можно найти «начальное», но практически никогда «бесконечное», разве что в философской литературе. Так как «бесконечное» не имеет ни начала, ни конца, то и быть прямым антиподом конечного оно не может по определению. А поскольку в бесконечном «начало» и «конец» отсутствуют, то антиподом его может быть только термин «безначальное»
Понятие «бесконечное» по диалектике - это одновременно «безначальное».
Безначальное как антипод бесконечного логически отрицает существование конечного. Там где есть бесконечное, конечного быть не может.
По-другому говоря, у бесконечного ни в одной точке пространства не может быть начала. Бесконечный мир по определению не имеет ни конца, ни начала.
В сущности термин «бесконечное» это проявление антропоцентризма. Субъект всегда «движется» в бесконечность от себя, как от начала, как бы становясь центром мира. Не имея представления о безначальном, мы при бытийном логическом мышлении не можем выйти на понятие «конечное» и вынуждены вводить этот термин «руками», опираясь на эмпирику каждодневного и постоянного общения с конечными вещами. Вводить конечное, логически ошибочно понимаемое как противопоставление бесконечному. О понятии «конечное» философы уже были информированы хорошо, хотя и получили эту информацию, «перепрыгнув» через безначальное.
И, в общем-то, можно было бы и дальше обходиться без термина «безначальное». Но, не имея его, мы не в состоянии объяснить существование конечного в бесконечном. И более того, необъяснимым оказывается то обстоятельство, что бесконечное образуется вещами только конечными, поскольку у данных антиподов отсутствует переход от конечного к бесконечному. При наличии безначального возникает возможность такого перехода. И элементом перехода становится точка, тело другого ранга относительно бесконечного. То есть то, что по своему рангу не сопоставимо ни с чем и не имеет ни начала, ни конца (то, что ни начальное, ни конечное). Точка-тело, возникшая в бесконечности, сама по себе ни начало, ни конец и существует как бы как «неподвижное» образование. Но в природе неподвижность отсутствует и потому, пульсируя в унисон с окружающим пространством, точка приобретает движение. И в момент минимума и максимума пульсации у точки проявляются начало и конец. Безначальное становится начальным, а начальное, это то же, что и конечное. Так проявляет себя конечное в бесконечном. Так структура бесконечного образуется структурами конечными. Так может появляться выделенная точка на бесконечности в любой области этой самой бесконечности. Базисная точка, точка от которой начинается конечное в бесконечном.
Повторимся. Рассуждая о бесконечности и конечности на бытийно-логическом уровне, мы упираемся в скрытое противоречие отсутствия либо бесконечности, либо конечности вещей. Если у бесконечного отсутствует начало, то отсутствует и конец. Получается, что в природе нет ничего конечного. И, следовательно, нет никаких конечных вещей и нас с вами - конечных, рассуждающих о бесконечности. И снова перед нами антиномия и эта антиномия логически не преодолевается. Ее просто пропустили, постулировав самостоятельное существование конечного и бесконечного. Но мы-то существуем, доказывая это даже своими рассуждениями, и тем самым каким-то образом совершаем алогизм, разрешая противоречие. Каким же образом?
Мы уже констатировали, что бесконечное есть безначальное и вся природа не имеет ни начала, ни конца. Если этот тезис правомерен, то правомерен и противоположный тезис: каждая точка пространства есть начальная точка конечного, она же и конечная точка бесконечного. А из этой посылки вытекает одно из основных положений диалектики: Любая точка пространства и конечна, и бесконечна, и начальна, и безначальна. Все и конечно, и бесконечно. Каждая точка (тело) пространства индивидуальна. Тождественные точки (тела) в нем отсутствуют». Конечное и бесконечное в точке есть результат позиции наблюдателя (субъекта). Наблюдатель вне точки (тела) фиксирует ее конечность. «Переместившись» внутрь - фиксирует ее бесконечность.
Но, имея представление о безначальном и начальном, мы встаем перед проблемой: Как определиться в бесконечности с безначальной точкой? Иначе говоря, как выяснить в какой точке бесконечного пространства мы находимся? Ведь если каждая точка пространства индивидуальна, то мы, находясь на ней, должны всегда иметь возможность определить место своего нахождения, определиться с индивидуальностью этого места. Именно это и следует из диалектики начального и безначального. Естественно, что до постановки такого вопроса ответа на него не было. И современная математика такого ответа не дает. Поэтому оставим этот вопрос и перейдем к качественным аспектам математики.
1.7. Качественные аспекты математики
Природа, обозреваемая научными методами, состоит из отдельностей и потому главное внимание науки неявно и неосмысленно обращается на понятие «отдельного» и его отображение в основах математических символов, чисел, фигур.
В материальном мире отдельность это всегда тело, сохраняющее все материальные свойства (да иначе его невозможно и выделить из окружающего фона). Эта отдельность фиксируется мыслящим субъектом и бессознательно переносится на любое искусственное отображение и на объем, и на рисунок, и на индекс, и на букву, цифру или знак. Качество «отдельность» уравнивает в мышлении все окружающее: и предметы, и индексы, числа, знаки и становится основным отображением материальных предметов и их искусственных образов. Все, что не является отдельным, не воспринимается и потому не существует. Математики в своей индексации опираются именно на это главное для субъекта качество природы – отдельность. Все отграниченное от окружающей среды или фона, наделяется, в неявном виде, качеством отдельного. Операцияперенесения свойстваотдельного на все выделяемое и придает данному свойству всеобщий характер.
Таким образом, искусственные отображения предметов реального мира – индексы, символы, цифры и т.д. приобретают объективное содержание формального качества отдельного. Предметы и тела - естественные отдельности – целые. Индексы, числа, символы – «воображаемые» отдельности, символические отдельности. Без наличия качества «отдельность» появление математики было невозможным.Качество «отдельность» становится «проводником» исполнения законов диалектики в так называемых точных науках, становится первым и основным качеством отображения природы в мыслительном аппарате субъекта.
Отдельность не является абстракцией. Отдельность предметов и тел это внешнее отграничение формы от других отдельных в Целом, но не выделенных их из Целого. Это целое другого ранга. Оно носитель материального качества и как таковое обуславливает возможность логических операций с искусственными образованьями. Искусственные отдельности становятся как бы самостоятельными объектами, выделенными порождениями мышления (измышленными, потерявшими связь со свойствами природы), как бы априорными продуктами чистой человеческой логики. Именно это обстоятельство навело Канта, не имевшего представления об отдельном, на мысль, что «… все утверждения математики не являются неотъемлемыми признаками физического мира, а создаются человеческим разумом». И не только Канта, но и множество других философов и особенно математиков. Вот как сформулировал это кредо второй Ньютон Англии математик и физик Уильям Гамильтон: «Такие чисто математические науки, как алгебра и геометрия, являющиеся науками чистого разума, не подкрепляемые опытом и не получающие от него помощи, изолированными от всех внешних и случайных явлений…. Вместе с тем это идеи, рожденные внутри нас, обладание которыми в сколь нибудь ощутимой степени есть следствие нашей врожденной способности, проявление человеческого начала».
«Математик, – присоединяясь к ним, утверждает крупнейший математик Гильберт - творит понятия и аксиомы априорно» и «математика пользуется такими идеальными объектами, которые возникают при отвлечении от всех свойств материальных предметов, кроме количественных и им подобных отношений, пространственных и им подобных форм». Эти утверждения являются следствием отношения к математике как к умозрительной, количественной науке, не имеющей никаких связей с природными качествами. Существует, например, устоявшееся мнение, что «математика отвлекается от качественных особенностей объектов…». «Математика отвлекается …» не в большей мере, чем любая другая наука. Только количественное сопровождение математических операций, на которых концентрируется внимание в математике, вуалирует и отодвигает на второй план все те свойства, которые непосредственно не связаны с числами или индексами. И обусловлено это отсутствием представления о том, что все выделенные из окружающего фона природные и искусственные элементы обладают общим для всех их материальным качеством отдельного. Априорно ничего не творится. Утверждение об априорности математического творения игнорирует отдельность. Но без отдельности любое математическое понятие просто не существует. Математики всегда оперируют с отдельностями материального мира, с их свойствами, отличающимися от свойств окружающих тел только формальным характером (например, кажущейся безразмерностью) отображения отдельностей определенной формой символов или чисел. Качественные аспекты математики начинаются с понимания отдельного и его места в математических отношениях.
Отдельность и в математике не абстракция. Она отображает Целое в логических взаимосвязях индексов математики. И потому взаимосвязи искусственных отдельностей следуют законам существования Целого.
Ни одно искусственное понятие не может быть полной абстракцией, абстракцией в которой ничего нет из материального мира, поскольку в ней всегда отображается одно реальное природное свойство - отдельность. Привлечение в математическое понятие даже одного объективного свойства природы (точнее опора в любом понятии на свойство природы) а тем более на основное – отдельность, обусловливает математическим операциям с индексами и числами отображение определенной, скрытой от субъекта формы природных отношений. Отношений, обусловленных взаимодействием между телами. Другое дело, что это свойство методами аксиоматизации выхолащивается до полного исчезновения в понятийной форме. (Например, аксиоматика Гильберта, или, определение понятия «точка»: точка – тело не имеющее протяженности. Но и в этом случае сохраняется представление об отдельности точки.) Именно отдельность каждой фигуры или символа придает геометрии, как и всей математике, способность отображать формы реального мира. Отдельность это единственная природная форма, которая сохраняется при любых способах абстрагирования от реальности и потому остается в неявном виде во всех операциях математической логики, обусловливая возможность отображения реальных природных процессов. И как следствие, математические символы, сведенные в абстрактные уравнения различных разделов математики, всегда «помнят» по структурам этих уравнений о своей «принадлежности» тому или иному свойству или качеству материальных тел. Именно качество «отдельность», сохраняющее смысл целого и действующее как целое, обусловливает такую форму абстрактной памяти. А потому, подчастую, оказывается неожиданным появление в результате расчетов некоторых чисел или фигур, которые не закладывались и даже не предполагались в рассматриваемой системе уравнений.
Математик не воспринял первичности отдельности и перешел на логику бескачественного количества, не заметив, что вместе с количеством как отображением реальности в математическую логику вошло и формальное качество, качество самих формальных фигур, чисел, символов. Так математика превратилась в особую рассудочную науку, имеющую свой предмет, - число и фигуру. При этом не было замечено главное для этих предметов - отдельность. Забвение отдельности как целого, как основы всех предметов и обусловило появление аксиоматических методов сначала в математике, а затем и в других науках. Введение индексов, отвлекая от конкретного количественного содержания чисел, тем не менее, не отвлекает их от отдельности. Символ всегда сохраняет качество отдельности. Так незаметно произошел переход от предметов как отдельностей к классической концепции, забывающей об отдельности в математике и рассматривающей в качестве своего предмета числа и фигуры.
Символические отдельности не обладают всей гаммой свойств, присущих природным образованиям и потому несопоставимы как системы (они по совокупности свойств не равнозначны), но, будучи искусственно отделенными от среды и, обладая минимальным количеством природных свойств, символические отдельности становятся едиными понятиями с естественными отдельностями. Искусственное выделение обусловливает проявление в них свойств формальных, отображающих неявным образом некоторые аналоги природных свойств, позволяющих проводить с символами математики операции по законам диалектики.
Наличие отдельного как выражения целого в математических методах сопровождается порождением формальных свойств, отображающих иным образом те качества и свойства природы, которые наличествуют в отринутых природных качествах. Именно эти формальные свойства обусловливают процессам логического мышления и математическим операциям определенную адекватность процессам реального мира. Природные отношения реальности отображаются в математической логике как отношения между индексами отдельностей, но по логике природных процессов. Причем в статической математике неявно и схематично отображаются чаще всего непонимаемые, например, физические или биологические процессы. Непонимаемые постольку, поскольку за индексами и цифрами не видна физическая или биологическая сущность и механизм соответствующего процесса. И итогом математических выкладок подчастую становится не понимание происходящего процесса, а подгонка результатов под эмпирические факты, выработка определенной последовательности действий для перехода от одного процесса к другому иногда даже различными математическими методами. Вот почему основной продукцией теоретиков являются горы исписанной бумаги при минимуме результатов.
Отдельность – прародитель числа. Она, придавая искусственным индексам и числам качество равнозначности, обусловливает для них возможность установления взаимно – однозначного соответствия по единому для всей природы качеству отдельного. Последнее и становится основой, как для простейшего счета, так и для всех математических операций. Равнозначность отдельного в виде тела, вещи, предметов или искусственных символов, букв, чисел, индексов позволила Пифагору выразить ее краткой фразой: «Все вещи суть числа». Это утверждение напрямую придает числам телесную значимость, скрывая их основное качество – отдельность. Но телесная значимость есть комплекс взаимосвязанных природных свойств. Число же этими свойствами не обладает. Как искусственное преобразование телесного через отдельное число, индекс, символ отображает некое наличие телесного при отсутствии тел не через комплекс природных свойств, а через одно всеобщее свойство – отдельность.
Любое «безразмерностное» число или символ, рассматриваемое само по себе и для себя, то есть вне уравнения, ряда или матрицы, имеет единственное значение, которое мы себе представляем. Но за ним всегда скрываются некоторые математические структуры, о которых мы подчастую не имеем ни малейшего представления, но которые обеспечивают каждому числу внутреннюю сакральность. Сакральность числа – «свернутая» (по выражению Н. Кузанского [7]) количественная величина числа, знака или индекса, скрывающая те составляющие его отдельности, которые «всплывают» в зависимости от операций, производимых с числом. Число, являясь определенным качеством и количеством, содержит в себе в свернутом виде, множество других чисел.
Сакральность каждого числа – это также его память, его способность скрытого участия во многих математических операциях, способность «чувствовать» свое место в них. Свойства память числа и формы – определяются гармоничными связями внутри уравнений.Подчастую неизвестно, какая «количественная сущность» и какое качество представлено числом (символом) в любом уравнении, поскольку символические математические отдельности, в зависимости от граничных условий, могут отображать разные природные качества. Число как отдельность, всегда сложное не только количественное, но и качественное образование и может оказаться носителем двух, трех, четырех и более свойств:
Отдельность, – качество (например, ноль).
Отдельность, качество и количество (число целое, дробное, иррациональное и т.д.)
Отдельность, качество, количество и другое свойство (комплексные числа).
Отдельность, качество, количество, третье и т.д. свойства (например, кватернионы).
Математические операции с многокачественными числами должны проводиться таким образом, чтобы за числами сохранялись все обретаемые ими качества. Причем качества эти не всегда подлежат сокращению, поскольку сокращение качества подчастую меняет физический и математический смысл уравнения. Например, вряд ли подлежат сокращению члены уравнения, содержащие качество – отдельность, выраженную безразмерностным числом p, поскольку сокращение на него превращает уравнение окружности в уравнение некоей другой геометрической фигуры, т.е. меняет качество уравнения, а вместе с ним и смысл обретаемого решения. Похоже на то, что трансцендентные числа, как и числа иррациональные, являются своеобразными комплексными составляющими геометрических величин.
В структуре каждой математической операции основой являются качественные свойства тех числовых отдельностей, которые в ней используются. Качественные свойства математических отдельностей, хотя и имеют во многих случаях формальный характер, тем не менее являются некоторыми аналогами физических размерностей. Только их размерностью становится не символика свойств, как в физике, (например, см, сек, гр., и т.д.), а те признаки свойства, которые принадлежат элементам индексов, фигур, символов. Математические операции могут производиться только между подобными элементами. Включение в них неподобных, так называемых безразмерностных элементов изменяет структуру операции, переводя весь процесс из одного раздела математики в другой. (Например, сокращение размерности в см как качества отрезков, превращает геометрическую операцию в алгебраическую). Поэтому в геометрии невозможно сокращение размерностных индексов. Геометрия – качественная наука.
Математика – наука о качественных, количественных и пространственных формах действительного мира. Она оперирует с символами, числами и их индексами, и потому число как отдельность является базовым элементом математики. Отсутствие в современной философии всеобщих понятий «Целое» и «отдельное» привело к выводу об оторванности математических символов от материальных тел. К выводу об особенности восприятия понятия числа только как количественной величины, постижение которого, как полагают, связывалось, например, у первобытных людей с количеством пальцев. Кажущееся отсутствие явного прообраза понятия «числа» вне математики обусловило появление односторонних внутри математических определений данного понятия, как бы не связанного с реальным миром. Имеется несколько определений понятия «число», порожденных математическими образами, т.е. исходящими из потребностей математических операций. Ориентируясь на [8], кратко опишем некоторые определения числа, исходящие из математики. Одно из первых определений изложено в «Началах» Евклида:
Пусть
S = {1,1,1,…}
представляет собой бесконечное множество геометрических отрезков, называемых единицами. Тогда натуральное число N определяется следующим образом:
N = 1 + 1 + 1 + … + 1 (N раз).
Это определение является основой математических понятий простого и составного числа, делимости и сравнения, операций умножения и деления и т.д.
Известен подход к определению числа, названный «конструктивным». Согласно ему «конструктивное» действительное число А, являясь математическим объектом, задается следующей формулой:
A = åai2i , (а)
ai Î {0,1} и i = 0, ±1, ±2, ±3, … .
Число определяется следующей интерпретацией. Пусть
В = {2n}, (в)
множество геометрических отрезков длины 2n (n = 0, ±1, ±2, ±3, … .). И «конструктивными» действительными числами становятся все математические объекты, представленные в виде конечной суммы геометрических отрезков из (в) в виде (а).
Можно привести определение действительного числа, данное И. Ньютоном:
«Под числом мы понимаем не столько множество единиц, сколько отвлеченное отношение какой-нибудь величины к другой величине того же рода, принятой нами за единицу».
И здесь мы имеем дело с определением действительного числа средствами математики. Из вышеперечисленных определений ни одно не обосновывает правомерность соответствия чисел тем предметам реальности, которые скрываются за ними. Такое соответствие может содержаться только с опорой на эти предметы.
Встречаются и «внешние» относительно математики определения. Пифагорейская математика, например, так определяла понятие «число»: «Число есть отражение количественных отношений между вещами». Напомним, что у пифагорейцев числа – самостоятельные идеальные сущности, от которых зависят предметы реального мира. Но это понятие можно высказать иначе: «Число – это выражение определенного количества» [9]. Или, «Число – отражение количественных отношений между вещами». Последнее ближе к истине, но неточно, скорее число – отражение количественных отношений между отдельностями. Или иначе – число – цифровой символ отдельного в математике. Это определение устанавливает взаимно однозначное соответствие между всеми вещественными и искусственными отдельностями, превращая их в равнозначные отдельности. Именно равнозначность отдельностей и обусловливает возможность проведения математических операций с самыми различными формами отдельностей.
Здесь надо отметить одну существенную особенность физических свойств, которые в принципе не могут быть отделены от тел, и, следовательно, формально не могут становиться отдельностями. Физические свойства не существуют самостоятельно. Как природные характеристики тела они не являются отдельностями, не являются выделенными, отграниченными от тел или от фона. Более того, свойства тел есть «ничто», но тела, ими образуемые, есть все. И это «ничто» одного тела взаимодействует с подобным «ничем» другого тела и изменения, обусловленные этими взаимодействиями, могут фиксироваться как визуально, так и приборно. Именно количественная характеристика качественных «составляющих» тел, имеющая внешнее отображение в образе размерности, становится признаком отдельности для физических свойств. Размерность обусловливает однозначное соответствие между различными свойствами тел как отдельностей и равнозначность всем другим отдельностям, в том числе и искусственным. Но, как было показано ранее, свойства имеют кроме размерности и еще одну количественную характеристику своей значимости у тел.
Счет, как и все математические операции, основан на установлении взаимно однозначного соответствия между различными отдельностями, между равнозначными отдельностями. Свойство отдельность придает искусственным образованиям (числам, индексам, символам, значкам) равнозначность, лишая их качественного различия и отрывая тем самым от реальности, превращая в «заместителей» реальных предметов, их процессов и свойств. При этом операции с индексами (сложение, вычитание, умножение и т.д.) становится математическим отображением «движения» отдельностей, моментом движения их в статической форме.
В природе не существует ни точек, ни прямых, ни плоскостей, ни других геометрических форм, изучаемых математикой, ни даже свойств, изучаемых физикой, химией и другими науками. В материальной природе существуют тела и телесные образования в виде отграниченных отдельностей, обладающих свойствами, и именно эти отдельности изучаются на своем языке различными науками. Наличие единого объекта изучения и обусловливает математике универсальность применения в различных науках, но формализованный абстрактный аппарат обусловливает ей наличие формализованной качественной структуры логического согласования количественных факторов. В этом случае абстрактные символы приобретают безразмерностные свойства, тем не менее, подобные природным размерностям. Они-то и обусловливают соблюдение законов природы в формальных количественных взаимосвязях, заменяя движение динамическое природное на движение статическое вневременное. Статическое «движение» – мгновенное движение. Мгновенье – это покой, а не движение. Система последовательных мгновений в математике – движение. Это и позволяет описывать эмпирическое движение абстрактными формами – математическими структурами.
Движение в статической математике скрыто за процессами суммирования, вычитания, дифференцирования, интегрирования и т.д. Всякое сложение двух или более чисел есть не просто получение их суммы и не всегда именно сумма определяет необходимый результат, хотя она и образуется, а объединение чисел в одном количестве (как бы объеме) слагаемых. Причем сами слагаемые остаются в неявной форме (скрытой за числами) в этом объеме отдельностями. Они не теряют своей численной индивидуальности, не «сливаются» с другими количествами (хотя и отображенные в одном числе, результате, кажутся слитыми, лишенными отдельности). Т.е. остаются самостями в новом количестве и качестве, и только по этой причине всегда могут быть «извлечены» из результирующего количества. Сами количества (числа) как отдельности, в свою очередь, представляют собой некое неявное объединение более «мелких» отдельностей (отдельностей либо другого ранга, либо другого качества), допуская по этой причине «свое» дробление на любое количество отдельностей по новым качественным признакам. Переход от ранга к рангу есть и количественное и качественное изменение. Например, дробление некоего количества по качеству целого отдельного, т.е. кратно единице, создает определенное число целых отдельностей. Но дробление того же количества по качеству дробного отдельного создает отдельные меньше единицы, но в большем количестве. И в случае разделения чисел по качеству дробного целые числа в ряду дробных не могут находиться. Даже будучи целыми, они должны иметь формы, отображающие их дробность, например 8/2; 33/11; 93/31 и т.д. Это создает и определяет единую систему отдельностей.
Дата добавления: 2016-05-11; просмотров: 429;