Диалектика математики 3 страница

Имелись только некоторые разногласия относительно того, откуда человек получает эти исходные представления, формулируя свои аксиомы. Исходными носителями этих разногласий были те же Платон и Аристотель. Для Платона геометрические аксиомы – истинное воплощение идей. Вот что он пишет о геометрах в «Государстве» [3]:

«Разве ты не знаешь, что, хотя они и используют видимые формы и рассуждают о них, мыслят они не о самих формах, а об идеалах, с которыми не имеют сходства; не о фигурах, которые они чертят, а об абсолютном квадрате, и абсолютном диаметре… и что в действительности геометры стремятся постичь то, что открыто лишь мысленному взору?»

Для Аристотеля истина познается безошибочной интуицией, а аксиомы отображают эту истину и являются основой для рассуждений доказательств и математических выводов. Методология логических взаимосвязей, тоже обоснованная Аристотелем, позволяла получать, путем логичных рассуждений, отталкиваясь от первичных понятий правильные заключения о предмете рассуждения: по дедукции, по индукции, по аналогии и т.д. Отметим: дедукция - логическое умозаключение от общего к частному, от общих суждений к частным или другим общим выводам. Индукция - умозаключение от частных, единичных случаев к общему выводу, от отдельных фактов к обобщениям [5]. Причем, единственный из этих методов – рассуждение по дедукции - гарантировал получение заключения такой же надежности, как и используемые посылки. Эта истина, как полагают, и была положена в основу построения геометрии. А поскольку аксиомы, по определению, оказывались общими и по отношению к природе, и по отношению к геометрии, то именно они и становились той отправной точкой, которая использовалась для «дедуктивного» построения основ как геометрии, так и других разделов математики.

Итак, перед нами действительно абстрактный метод. Но не тот научный метод, о котором говорилось выше, а иллюзия абстрактного метода. Вымышленная абстракция начинается с бескачественного определения простых, основных «абстрактных» и потому отсутствующих в природе явлений: точка, прямая, плоскость и т.д. и предписывания их природе. С простых и столь очевидных истин, что ни у кого даже не возникает вопроса: А нужны ли геометрии такие посылки и аксиомы? И абстрагированы ли они от природных свойств?

Однако, с позиций логики, в справедливости их невозможно усомниться. Эти понятия, как уже говорилось, по мнению древних греков, одинаково употребимы как в пространстве реальном, так и в пространстве геометрическом. (Свойства которого никому не известны, но известно, что геометрические фигуры можно, с одинаковым успехом, строить как в голове, так и на листе бумаги, и на поверхности Земли, что и обусловливает им воображаемую общность.) И потому аксиомы как бы становятся общими для обоих пространств и, следовательно, посылками для «дедуктивного доказательства». Именно такая «дедукция» от частностей - аксиом, отображающих одно, или ни одного, качества к общему - геометриям и обусловила появление множества взаимно противоречивых и несводимых к одной геометрий. Именно она и не позволила получить единое представление о качествах как реального, так и геометрического пространства и все дюжины геометрий, полученные методом «дедукции», до сих пор подвешены в воздухе, точнее в координатных системах бескачественных пространств, и таких же геометрий, ибо получить качественные представления из бескачественных посылок просто невозможно.

Здесь следует отметить, что не только в математике господствует метод индуктивного мышления. Практически вся современная европеизированная наука, изучающая естествознание, не имеет в своем арсенале понятия «целого» и потому базируется на том же методе индуктивного мышления. Она зарождалась с описательно – наблюдательного рассмотрения явлений окружающего мира, с эмпирического исследования его отдельных частей, с определения аксиом и постулатов, некоторым образом характеризующих эти явления или части, позволяя в какой-то мере объяснять их. Таким образом, естественные науки развивались от частного (индукция) к общему (целому). «Искали», опираясь на категории механистической философии, общие закономерности природы, представляя реальность некоторым «большим» логически связанным механизмом. И потеряли цель изучения, получив что-то «громадное», неопределенное, не имеющее никакого отношения к природе и, следовательно, к целому. Поэтому понятие целое в современной науке не наличествует. И как следствие этого отсутствия, потеряно представление о наличии качеств в математике.

Отсюда, из понимания наличия или отсутствия качеств в математике и в частности в геометрии, и вытекает вторая большая математическая иллюзия. Иллюзия того, что математика является только количественной наукой.

Удивительно, но взгляд на математику как на количественную науку, порожденный 2500 лет назад пифагорейской школой в Кратоне на юге Италии, не просто ни разу не пересматривался, но и до сих пор не подвергается никакому сомнению. Даже Клайн, критически анализируя все аспекты возможных ошибок и противоречий в основаниях математики в работе [3], совершенно не обратил внимание на бескачественный аппарат математики. Единицы математиков замечают противоречия в определениях математических понятий, в количественных математических операциях, наличие несоответствий и ошибок в проведении некоторых расчетов, и то, что почти все математические операции проводятся не с бескачественными «голыми» числами (разве что в первом классе, да и там опосредованно), а с определенными предметами или свойствами. То есть имеют явное качественное сопровождение. И, похоже, даже не возникает вопросов: А имеются ли в математике «голые» числа? Не обладает ли числовое поле особыми, не вещественными свойствами?

Пифагорейцы, наблюдая природу, отмечали, что самые различные качественные взаимосвязи и явления природы проявляют одинаковые математические свойства, и, опираясь на эти наблюдения, пришли к выводу о том, что именно математические свойства отображают сущность явлений и эта сущность скрывается в числе и числовых отношениях. А потому «голое» число у них стало началом всего, «единицей бытия». А все «тела» стали составляться из этих фундаментальных бескачественных единиц, образующих, в различных комбинациях, всевозможные геометрические фигуры. И потому, развиваясь в своей совокупности, «единицы бытия» и стали представлять в математике материальные объекты. А само бескачественное число приобрело статус «материи» (субстанции, не имеющей качеств, такой же бескачественной, как и окружающее геометрическое пространство). И как констатирует М. Клайн [3]: « …пифагорейцы, развив и усовершенствовав свои учения, начали рассматривать числа как абстрактные понятия, а объекты как конкретные реализации чисел».

Клайн противопоставляет наше понимание чисел пониманию пифагорейцев: «Учение пифагорейцев может показаться нам странным, потому что для нас числа абстрактные понятия, а вещи, физические или материальные объекты. Нам привычное понятие «число» возникло в результате абстрагирования, а ранним пифагорейцам эта абстракция была чужда. Для них числа были точками или частицами» (т.е. предметами и, следовательно, они абстрагировались от реальности. – Авт.).

Из этого абзаца не становится понятным, что же странного в понимании чисел пифагорейцами, и в чем же отличие нашего абстрагирования от абстрагирования пифагорейцев. И пифагорейцы абстрагировались (иначе они не пришли бы к числу) и мы, как нам кажется, абстрагируемся от природы (какова методология абстрагирования, в общем-то, несущественно, главное - какой получается результат). И пифагорейцы и мы видим за числами физические объекты. И пифагорейцы и мы отображаем эти объекты в «голых» числах и, следовательно, и их и наши отображения не несут в себе никаких качественных показателей, и эти числа каждый понимает так, как ему хочется: и фигурами, и точками, и частицами, и звездами, и даже Вселенной.

Главное, что не просто объединяет, а является основой понимания числа нами и пифагорейцами, заключается в том, что эти числа не несут в математике никакой качественной нагрузки. Они безразмерностны и обезличены. Они отображают только количественные величины и сами по себе (и в математике), как полагают даже философы, являются абсолютными абстракциями, а математика становится как бы наукой, оперирующей только с количественными отношениями абстрактных чисел. И это обстоятельство закреплено в определении математики как «науки, изучающей количественные отношения и пространственные формы» [6].

Отметим, что литературы, посвященной анализу качественного аспекта математической размерности, почти не встречается. Большинство математиков даже не подозревают о существовании такой проблемы. И весьма отрадно, что еще в 1996 г. в издательстве «Транспорт» вышла небольшая, но очень изящная и насыщенная монография «О взаимодействии размерностей в математических преобразованиях» А.Н. Митрохина, которую математики, похоже, не заметили [6].

Автор, исследуя проблему количественных и качественных взаимосвязей в математике, констатирует: «...математика является в настоящее время одной из самых неточных наук. Не в том смысле, что с ее помощью невозможно до какого угодно знака вычислить физическую константу p, или определить любую степень числа, или решить другие, более сложные количественные задачи, а в том, что она через свои понятия, определения и структуры объективно формирует в человеческом сознании искаженное миросозерцание, касающееся сферы взаимоотношений количественной и качественной категорий. Причиной такого положения является то, что сама математика как наука поставлена человеком на ложное основание, покоящееся на догме, идущей из глубины веков и состоящей в том, что количественная категория (число) может быть отделена от качественной и может самостоятельно развиваться. (п/ж курсив везде наш. – Авт.)

Одним из доказательств несостоятельности такой постановки вопроса может служить непонимание и неразрешимость в ее рамках «радианной» проблемы. А в целом в математике и смежных с ней точных науках существует целый букет противоречий и неувязок, образовавшихся в результате утверждения этой догмы в качестве аксиомы в науке. По этой причине, как это ни парадоксально, математика в научном мире зачастую воспринимается как «доктрина, в которой мы не знаем, ни о чем говорим, ни верно ли то, что мы говорим» или «…как наука о хитроумных операциях, производимых по специально разработанным правилам над специально придуманными понятиями», т.е. математические знания и результаты математических преобразований в среде ученых ставятся под сомнение и это находит отражение в отдельных трудах, посвященных взаимодействию математики и тесно связанных с ней прикладных наук, когда математические расчеты предлагается проверять на здравый смысл, в том числе в отдельных случаях это представлено в анекдотичной форме.

Апофеозом научного заблуждения при этом можно считать слова, приведенные, например, в работе Г.А. Аракеляна: «… когда физика как наука о природе достигает уровня, при котором основными ее инвариантными конструктами выступают голые числа, а не размерные величины, начинает явственно ощущаться и осознаваться единство физической и математической науки». Вся трагедия этого высказывания состоит в том, что автор, без сомнения обладающий большим багажом современных научных знаний, несмотря на правильный вывод приведенного суждения, способен воспринимать математические и физические величины, физические константы не как размерностные понятия, а как «голые» числа. И он не одинок в своем заблуждении, так как приведенное высказывание не осуждается в научном мире, а воспринимается как нормальное явление. Все имеющиеся факты свидетельствуют о том, что «голые» числа в настоящее время прочно занимают свое место в науке, и ученые, стоящие во главе крупных научных школ, без тени сомнения пользуются такими понятиями, как «безразмерная переменная».

Гипотеза о единстве, на основе которой органически решаются многие выявленные проблемы точных наук, показывает, что «голые» числа сами по себе ничего не могут выразить в законченном виде. Числа, несомненно, могут существовать в нашем сознании как самостоятельная количественная категория, однако любое математическое преобразование требует обязательного осмысления взаимодействия качественных частей математических величин, т.е. анализа размерностей. Количественная категория вторична, она в образе пустого числа не имеет самостоятельного значения и не может участвовать в математических операциях отдельно от качественного содержания, которое может быть выражено как очень конкретно, так и абстрактно в самом общем виде. Тот факт, что на каком-то отрезке изучения математической проблемы можно оперировать только количественной частью математических величин, например, заучивать или переписывать таблицу умножения без анализа качественного содержания сомножителей и произведения, не дает основания принимать это в целом как аксиому или некий всеобщий закон. Для полного и правильного восприятия количественной операции следует ясно представлять себе, каким образом данная математическая процедура согласуется с взаимодействием качественных частей математических величин, т.е. взаимодействием размерностей.

Отнесение физических констант, включая p, а также различного рода коэффициентов к «голым» числам является глубочайшим заблуждением современной науки».

Автор работы [6] не ограничился констатацией некорректности использования в математике голых чисел, но и, что более важно, предложил и обосновал гипотезу о единстве количественных и качественных категорий во всех разделах математики. Мы согласны с А. Митрохиным в необходимости единства качества и количества в математике, но не будем перелагать его гипотезу, ограничившись отсылкой читателей к первоисточнику, отметив только, что ни в одном разделе математики невозможно корректное производство математических операций без участия в математических преобразованиях качественных составляющих. Поскольку работа А. Митрохина существенно расширяет знание области неопределенности и заблуждений в математике, полагаем необходимым привести, с небольшими сокращениями, в нашей работе в приложении №1 «Заключение», которое было получено им в результате исследования и которое само по себе достаточно полно отражает как гипотезу, так и итоги проделанного исследования.

Отметим, что единство количественного и качественного в математических преобразованиях, за использование которого в полном объеме ратует А. Митрохин, не надуманная проблема, а является следствием логического абстрагирования от качественных категорий реального мира (наибольшей общности) к математике. Однако во времена оные абстрагирование от качества было проведено таким образом, что качественные категории, сопровождающие математические потребности, и обуславливающие появление соответствующих чисел, оказались отброшенными не только мысленно, но и практически. И эта, достаточно простая операция, необходимая как частность узкого круга практических потребностей («голые» числа почти не применяются в практике, за ними всегда стоят либо предметы, либо качества) была распространена на весь математический аппарат, что и послужило основанием считать математику только количественной наукой. Подходит пора возвращения к истокам, пора возвращения качества в математику.

Мы не приводим еще ряда других заблуждений, которые будут затрагиваться по мере изложения материала, но убеждены, что и ими перечень некорректных представлений в математике не ограничивается. Появление некорректностей - естественное следствие поэтапного, от частного к общему, изучения человеком природных явлений, но их виртуальное наличие в теории оказывает постоянное негативное воздействие на адекватное восприятие законов природы и на развитие самой математики, и тех наук, в которых она находит применение.

Эти заблуждения особенно наглядно проявляются в теории чисел. Той самой теории, которая считается «продуктом чистого разума», и с которой начинается отрицание возможности применения в математике законов диалектики. Посмотрим, имеются ли хоть какие то основания для такого отрицания.

 

1.5. Диалектические законы в математике

 

Появление диалектического мышления, так же, как и математического, было невозможно до такого периода развития общества, на котором оно достигает способности абстрактного восприятия действительности. Причем развитие математического аппарата, вызываемое практикой, могло значительно опережать познание диалектики и, соответственно, оказывать существенное воздействие на постижение ее законов и категорий. Можно полагать, что именно математика (арифметика и геометрия) породила диалектическое мышление. Диалектика же как наука, развившись и охватив своим влиянием все остальные науки (кроме математики), позабыла о своих «родителях». Иначе чем объяснить, что современная математика оперирует, как полагают, обезличенными числами, абсолютно абстрактными количественными отношениями, и числа сами по себе не несут в математике никакой качественной нагрузки и не «подчиняются» законам диалектики.

Отметим, что все эти уверения в бескачественности и обезличенности чисел не очень-то соответствуют истине. На самом деле в математике нет ни одного самого по себе бескачественного или обезличенного числа. Подчеркнем - ни одного! И это утверждение касается не качественного сопровождения чисел, а непосредственно самих «голых» чисел.

Да, действительно, математические числа, сами по себе, не обладают ни одним природным свойством и выраженной не численной индивидуальностью. Только с этой точки зрения они бескачественны и обезличенны. Однако числа обладают так называемыми формальными свойствами, которые не являются качественными, соответствующими природным свойствам, и потому не имеют размерности, а, следовательно, и не различаются между собой. Это обстоятельство как бы тоже свидетельствует о том, что числа - продукты творчества свободного ума, отказавшего числам в качественной размерности, и как вывод - безразмерностные числа не могут описывать диалектику природных процессов.

Но сами для себя и того множества, в которое эти числа входят, они обладают и качеством и, как уже упоминалось, индивидуальностью (иначе не видать бы им этого множества) будучи даже безразмерностными. Только их качественность имеет характер формального группового различия и не сразу определяется. К тому же количественная величина числа не считается индивидуальностью, поскольку можно написать бесчисленное множество чисел тождественных по количественной величине. (Например, в квантовой механике постулируется тождественность всех фотонов и электронов. Однако это не мешает физикам считать, к примеру, электрон не формальным образованием, а частицей, то есть индивидуальностью. Тем не менее, формальное тождество количественных величин многих чисел лишает на сегодня данные числа индивидуальности.)

Познакомимся с «обезличенными» числами бесконечного натурального ряда, названного Гегелем «дурным» за его «кажущуюся» бескачественность. Основное свойство чисел натурального ряда заключается в том, что операции сложения, вычитания и умножения с ними обусловливают появление тоже целых чисел. Рассмотрим элементы этого ряда и выясним, являются ли его члены качественными или бескачественными числами:

0; 1; 2; 3; 4; 5; … …25; 26; …

или

0 1 2 3 4… …25 26 …

Прежде всего, фиксируется то обстоятельство, что каждое число - целое, отделенное от другого целого точкой с запятой, запятой или некоторым пространственным промежутком. Это настолько привычно, что не вызывает никаких вопросов. А между тем вопрос присутствует: Зачем отделять числа друг от друга, если они и количественно, и качественно обезличены?

Оказывается если их не отделять, то бесконечного ряда просто не будет. Появляется не ряд, а что-то бесформенное и неопределенное. Поняв это, делаем первый вывод: чтобы иметь дело с определенными числами необходимо нужное количество цифр некоторым образом отделять от другого количества цифр (т.е. использовать геометрию). Эта известная всем с первого класса немудрящая процедура в диалектике является процессом наделения тела-целого качеством отдельного. По аналогии с выделением отдельного из целого констатируем: каждое математическое число само по себе обладает формальным качеством отдельного и уравнивается этим качеством со всеми другими числами. И как отдельное оно не имеет размерности.

Данное отдельное становится хотя и формальным (не имеющим размерности), но действенным качеством, объединяющим каждое число со всеми остальными числами. Каждое число - математическое целое. Такое же целое в математике, как материальное тело целое в природе. В нем неявно заложены свойства всех чисел математики. Оно, данное число, - «срез» в определенном месте бесконечного числового поля, представление чисел данного места. Вместилище всего множества чисел, проявленное через одно число. Оно математическое целое, выраженное посредством цифр или определенных знаков. Количество этих цифр и их численные величины - индивидуальность числа, его количественное свойство.

Отдельность - единое свойство всех абстрактных математических чисел. Через него у множества чисел появляется общее качество - отдельное, превращающее каждое число в математическое целое. А само число становится отдельным числом только тогда, когда оно отделено от другого числа некоторым подобием пространства или знаком, отображающим пространственность (прослеживается аналогия с разделением тел), и имеет свою индивидуальную численную величину.

Надо полагать, что математическое целое не то же самое, что телесное целое. Оно есть формальное «образование» и определяет только отдельность формы числа (поскольку не имеет размерности), можно сказать формальную отдельность одного, составленного из цифр числа, от другого. В этом случае, численная величина отдельности становится ее другой качественной определенностью, оставаясь также и ее индивидуальной величиной. И потому уже невозможно считать численную величину одной отдельности бескачественной относительно численной величины другой отдельности. Отсюда следует второй вывод: формальное безразмерностное количество приобретает в отдельном своеобразное значение качества, то есть, образует единое для всех чисел количественное (численное) качество, оставаясь индивидуальным для данной отдельности, для данного числа. Рассуждая онтологически, перед нами элемент своеобразного «превращения» численной (количественной) величины числа в его качественную составляющую, ту самую составляющую, которая и обусловливает существование закона перехода количественных изменений в качественные. Именно единое для всех чисел качество - «количественная величина числа» и определяет возможность проведения различных математических операций с числами.

Проведем еще одну операцию с рядом натуральных чисел. Не будем убирать точку с запятой, а уберем через число одну точку сверху. Например:

0,1; 2,3; 4,5; …; 25,26; … ® ¥ .

Получается осмысленный ряд. Но это уже не ряд целых чисел, а ряд чисел дробных. Причем в данном ряду не окажется ни одного целого числа. Однако все числа ряда обладают качеством отдельного и по этому качеству едины сами по себе и с целыми числами. Но у них появилось и новое качество, - качество дробности. И это новое качество делает целые и дробные отдельности качественно несопоставимыми между собой. Качественно различными числами по формальной количественной качественности.

Если качество целого единственно (в том смысле, что ряд заполнен только целыми числами), то качество дробного количества - множественно (дробные числа проявляют множество различных, формальных качеств). Но именно целые числа «порождают» большое разнообразие чисел дробных. И потому, без целого не получается дробного.

Целые числа тоже образуют множество. Например, множество различных, последовательных чисел натурального ряда, проявляющихся в процессе добавления к величине предыдущего числа количественной единицы. Процесс добавления единицы нарушает качественную однородность натурального ряда, образуя два новых качественно различных вида чисел:

- четные числа;

- нечетные числа.

Это хорошо известное качественное разделение целых чисел в арифметике и заложено в основу одного важнейшего гносеологического понятия - «противоположности». Обратим внимание: понятия «четное» и «нечетное» не несут никакого противоречия. Они противоположности, понимаемые как:

- четное одно количество,

- нечетное другое количество.

И ничего более. Это не логические противоположности типа да - нет, или «+», и «-», обусловливающие возникновение именно логического противоречия, хотя они по внутреннему смыслу тоже не противоречивы. Это те количественные противоположности, которые составляют сущность диалектического закона противоположностей. В таком понимании противоположности отсутствует даже намек на противоречия. Противоположностью оказывается различие чисел по численной величине, по количественному качеству. И только.

Без чисел, входящих в натуральный ряд, невозможно представить никаких целых чисел. При этом их разнородность начинается не с четных и нечетных чисел, а с первых двух цифр ряда 0 и 1, значительно отличающихся по своим свойствам от других чисел ряда.

Нуль и «ничто», и «все». Нуль - число особого качества. Единственное число в натуральном ряду, обусловливающее проведение таких математических операций, которые не могут проводиться ни с одним другим числом. Оно не относится ни к четным, ни к нечетным числам. Оно само по себе число.

Единица тоже качественно особое число и как начало счета натурального ряда чисел, и как число, не подвергающееся степенному «воздействию», и как делитель или сомножитель других чисел и т.д. Оно целое, основа качественного отдельного всех чисел. Предтеча различия целых, дробных и других «необычных» чисел.

Однако в математике на сегодня понятия о качественном различии между целыми и дробными числами отсутствует. И потому последовательный натуральный ряд целых чисел не считается полным, поскольку между любой парой целых чисел как бы можно расположить сколь угодно большое количество чисел дробных.

Эта удивительная логика почему-то забывает, что в промежутке между любыми двумя целыми числами находится не только множество простых дробных чисел, но и не меньшее количество тоже дробных иррациональных чисел. И стоит оказаться в этом промежутке хотя бы одному иррациональному числу, то его будет достаточно, чтобы прервать последовательность любой пары чисел, демонстрируя тем самым качественное отличие дробных чисел от целых, и бессмысленность утверждения о возможности существования между целыми числами даже одного дробного числа. Новое качество - свойство иррациональности, обусловливает невозможность завершения вычисления чисел и требует, как будет показано далее, осмысленного использования их в уравнениях, особенно при возможности сокращения на иррациональные числа.

Данный пример демонстрирует нахождение среди конечных, дробных чисел (дробление которых заканчивается на некоторой операции), чисел иного качества, вычисление точной величины которых не заканчивается за бесконечный промежуток времени. Да и сами целые числа легко и незаметно включаются в состав дробных простым добавлением «бесконечного» количества нулей после запятой или делением целого числа на единицу. Например, 25/1. (Это обстоятельство и спровоцировало представление о возможности расположения между целыми числами бесчисленного количества дробных чисел.) Каждое дробное число, как и целое, является индивидуальным по своему количественному качеству и единым со всеми другими числами по качеству «отдельного».

Но качественное разнообразие математических величин не заканчивается делением их на четные и нечетные, целые и дробные. Вслед за ними появляются числа соизмеримые и несоизмеримые, иррациональные и трансцендентные, мнимые и комплексные, гиперкомплексные и … т.д., демонстрируя формальную многокачественность самих математических величин. И, следовательно, возможность проведения математических операций с ними не только по качеству отдельного (которое у некоторых видов чисел может, по-видимому, оказаться несколько иным), но и по другим качествам.

Таким образом, каждое математическое число обладает, по меньшей мере, двумя формальными диалектическими свойствами-качествами (формальными, поскольку они не имеют размерности и качественно не связаны между собой), превращающими их в отдельности и индивидуальности:

Качественное свойство, - отображающее отдельное;

Количественное свойство, - индивидуальная величина числа.

Убедившись в том, что в математике отсутствуют «голые» числа, познакомимся в самой общей форме с теми процессами, которые носят название математические операции.

Математические операции с числами - это всегда качественные процессы даже тогда, когда они проводятся с «бескачественными» числами. И они протекают, как это показано выше, в полном соответствии с законом отрицания отрицания. Но те же самые процессы являются одновременно и процессами перехода количественных изменений в качественные. Покажем это на примере простого сложения:

2 + 2 = 4.

Два тождественных однокачественных по отдельности и по численной качественности целых числа при сложении образовали целое, отдельное того же качества, но другой по признаку отдельности численной величины, количественной качественности. Новую отдельность, не равную ни одной из двух слагаемых отдельностей, и ничем не напоминающую эти отдельности. И, следовательно, количественно иную отдельность. Отдельность иного количественного качества. То, что она имеет иное качество, нам не заметно уже потому, что мы не считаем количественную величину качественным показателем, поскольку считаем ее обезличенной безразмерностной и не обладающей вещественным качеством. Но обезличенность не может являться основанием для постулирования отсутствия качеств. Математические качества хотя и имеют формальный характер, но их формальность не противоречит диалектическим законам, и более того обуславливает математическим операциям возможность строгого соблюдения законов диалектики. И уже поэтому изменение количественной величины любого числа само обусловливает изменение того или иного качества. Особенно это заметно на операциях со степенями. Возьмем, например, целое число 2 и извлечем из него квадратный корень.








Дата добавления: 2016-05-11; просмотров: 466;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.025 сек.