Диалектика математики 6 страница

Процесс движения в статической математике происходит мгновенно, т.е. вне времени и без связи со временем. Но именно мгновенный процесс обусловливает получение результата. (Вне зависимости от естественного времени осуществления, например, складывать 2 + 2 – можно миллион лет, но результат сложения - 4 не зависит от этих лет. Он мгновенен.) Он есть следствие логического переформирования отдельностей, и это переформирование реализуется мгновенно. Понятие «мгновенно» не включает в себя никакого времени, но оно-то и обусловливает изменение форм отношения между любыми искусственными отдельностями. В сущности это отражение реального процесса «ныряния» в небытие, описанного в разделе 1.1. на примере пульсации Земли. Здесь 2 и 2 это прошлое; + − фиксация момента нырка; = момент выныривания, а 4 – это новое.

Математические операции не включают времени и не зависят от него. Они хотя и производятся в рамках времени и требуют для своего осуществления немалого его количества, сами по себе времени не знают (не «ощущают») и существуют виртуально еще до процесса своего проведения. Результаты всех математических операций существуют задолго до того, как будет поставлена задача об их нахождении. Они ровесники Вселенной и будут существовать, пока она существует.

В геометрии операция сложения в принципе невозможна, поскольку фигуры не могут складываться друг с другом, (отдельности не складываются), а только прикладываются друг к другу. Сложение в геометрии означает, что некоторые протяженные фигуры одной качественности прикладываются друг к другу и мысленно происходит как бы замена образовавшейся фигуры другой, целой фигурой, конгруэнтной образовавшейся. При этом допускается предположение о том, что произведенная замена не влияет на состояние фигур и их свойства.

Даже одно, не отмеченное формально качество, например, половинка отрезка (отрезок, пополам – половина отрезка) уже не может применяться в операции с целым отрезком, поскольку у отрезка другое формальное качество, а только с равным себе качеством (качествами). Например, отрезок с отрезком или пол отрезка с частью отрезка. Причем эти операции, будучи логически и математически правильными, тем не менее, не являются корректными физически. Две сложенные половинки от сложения не становятся целым. Они остаются половинками, но мы мысленно представляем их целыми и переносим это представление на образовавшуюся фигуру в дальнейшем оперируя ими как единым целым. Однако не исключено, что на какой-то операции такой «целый» отрезок покажет, что он не целый.

Все геометрические фигуры имеют как минимум два качества: отдельность и протяженность, которая может иметь или не иметь размерность. И степенные отношения при протяженности всегда изменение качества. В геометрии все операции проводятся по правилам физики только с размерностями природными или формальными.Природные размерностные свойства обладают вместе с количественными характеристиками свойств определенными качественными значениями в форме КФР на базе золотых чисел (об этом в пятой главе). Сокращение на иррациональное или трансцендентное число в каждом случае требует обоснования, поскольку оно меняет физическое качество исследуемого уравнения.

В алгебре индексы не имеют качества протяженности, а только качество отдельности и признак индекса. В алгебре имеется отдельное качественное отличие одного индекса от другого и знаки операций, обусловливающих «движение». Они-то и отображают диалектику движения.

Раз можно получить из одного уравнения алгебраическую и геометрическую формализацию, то перед нами явление «памяти форм и чисел», способное вмещать виртуальные члены, как бы не отображаемые членами, входящими в исходное уравнение или фигуру. Для уравнения деленияотрезка в крайнем и среднем отношении, например, проверка заключается в построении по алгебраическому решению уравнения геометрического, а результат должен «подчиняться» золотым критериям Фибоначчи.

Кроме статических геометрий существует геометрия физическая (динамическая), можно сказать внутри физическая геометрия. Физика, как и математика, изучает объекты – отдельности, но каждая из них различные аспекты этих объектов. Физика, как и другие науки, свойства и связи тел, математика – количественные отношения и связи отдельностей. Физическая (динамическая) геометрия строится не на аксиомах и теоремах, а на физических свойствах и инвариантах. Все фигуры этой геометрии подвижны и их движения происходят в пространстве и времени. Динамическая геометрия не является математической дисциплиной, поскольку имеет дело не с абстракциями, а с количественными и качественными величинами конкретных свойств. Она исходит не из аксиом и постулатов, а из взаимосвязей свойств. Развивается не доказательством теорем и непротиворечивых, независимых аксиом (которые в ней отсутствуют), а посредством решения инвариантных уравнений относительно бесконечной гомотетии движения физических тел. Ее динамичность включает не только само движение, но и напряженность, и деформации, и время в рассматриваемых системах. Динамическая геометрия есть математический аппарат физики и всего естествознания. Динамические фигуры могут «накладываться» своими элементами на конгруэнтные фигуры статических геометрий. Конгруэнтность в данном случае – следствие возможности «замораживания» элементов движения и приведение всей динамической фигуры или ее части в статическое состояние. Наложение конгруэнтно, когда основные динамические элементы частично совпадают со статическими элементами.

Отметим также, что движение есть всегда изменение качества, даже в том случае, когда оно отображает арифметические или алгебраические статические процессы. И это изменение качества может прослеживаться даже на простейших операциях математического сложения. Особенно наглядно и быстро изменения качества наблюдается в последовательном сложении пар чисел обнаруженных Фибоначчи еще 800 лет тому назад и названных рядами его имени. Этот вопрос будет рассмотрен в третьей главе, а сейчас вернемся к свойствам фигур классической геометрии.

 

1.8. Свойства фигур евклидовой геометрии

 

Основу статической метричности в геометрии составляют жесткие измерительные инструменты конечного размера, сохраняющие его в любой области пространства. Неизменность мерного инструмента, незримо наличествует, при определении основных свойств евклидова пространства, к которым в настоящее время относят:

- однородность и изотропность. Любые точки и области этого пространства эквивалентны, а потому и неразличимы;

- вневременность. Свойство времени не отражается на изображениях геометрических фигур (элементов) и не учитывается при перемещениях и вращении (статичность). Время как качественный фактор в статических геометриях отсутствует;

- равновеликость геометрически переносимых, вращаемых или преобразуемых фигур. Процесс преобразования, перемещения, движения - только мысленный. В геометрии всякое механическое движение отсутствует;

- координатность в ортогональных направлениях. Бесконечность во вне. Глобальность координатных систем;

- отсутствие качественных взаимосвязей между различными свойствами и метричностью;

- независимость и отграниченность от физических тел. Геометрия имеет дело только с неподвижными фигурными отображениями тел, с их «тенями».

Таким образом, статическая геометрия Евклида автономна и от окружающего пространства, и от физических тел, изучением которых она занимается, и определяется только логической взаимосвязью заложенных в ее основу аксиом. Что касается пространства, на котором базируется геометрия, то оно не определено, и, как видно из приведенного набора, определяется постулативно в виде отдельных взаимно не связанных формальных свойств.

Особо подчеркнем отсутствие механического движения в пространстве геометрии и вневременность всех ее фигур. Свойство времени не имеет никакой связи с метричностью. И если вводится, как например, в геометрии Минковского, то формально-постулативно, не отображающим физического времени и не обладающим качеством, равнозначным остальным геометрическим свойствам без всякой связи с пространством, и главное - не вносит в статическую геометрию нового качества. Статичность и вневременность структурных преобразований предполагают в качестве первого условия корректного формулирования основных аксиом геометрии определение их в терминах, исключающих всякое упоминание о движении и пространстве.

Сами геометрические построения являются, по определению, схематическим, а потому идеализированным отображением предметов и тел реального мира. Отображаемые фигуры не имеют ни свойств, ни размерности и представляют собой условные абстракции, призванные человеческим сознанием в качестве метода описания отношений между телами внешнего мира. Описание производится путем перенесения качественного отображения тел на абстрактные понятия «точки», «прямой», «плоскости», «угла» и т.д. Данные понятия, заменяя естественные тела, с ними никоим образом не связаны и являются внешним признаком их существования. Особо отметим, что понятия эти не возникают при абстрагировании от реальных объектов, а определяются аксиомами вне прямой связи с реальным пространством или телами. Это самая важная особенность геометрии, как, по-видимому, и всей математики. Абстрагирование производится не от реальных физических предметов, а от некоторого отображения их в головах исследователей. Образовавшиеся аксиомы, так же как и фигуры и теоремы, следующие из аксиом, не имеют отношения к тем законам природы, для математического описания которых они создавались.

Основное отличие статических построений евклидовой геометрии от отображаемых ими физических тел-систем заключается в том, что любая общность геометрических фигур в своей совокупности и количественном выражении остается схемой внешних объектов и не обладает качествами системы. Отдельные элементы общности (линии, точки, углы и т.д.) вместе или порознь ничем, кроме аксиоматической зависимости, между собой не связаны, друг другом не обусловлены и своим сосуществованием как вместе, так и порознь не изменяют своих качеств. Исчезновение геометрических элементов некоторой общности фигур ничего не изменяет в их отношениях. Меняется форма геометрических фигур, возможна потеря этими фигурами своей конфигурации и образование новой, или изменение их подобия другим фигурам, распадение фигуры на отдельные элементы и даже их самостоятельное, независимое друг от друга существование.

А потому в основу статической геометрии закладываются отвлеченные представления о некоем однородном бесконечном пространстве, некоторых первичных понятиях, отображающих предметы и тела реального мира, и ряд аксиом, обеспечивающих возможность совместного функционирования их в рамках формальной логики. Однако, как отмечал еще Риман[4], до сих пор остаются невыясненными взаимоотношения между этими понятиями, закономерности связей между ними, и существует ли принципиальная возможность отыскания этой связи.

Именно отсутствие представления о взаимосвязи свойств тел и возможности отображения этих связей в геометрическом описании и придает геометрии статический характер, одновременно порождая иллюзию независимости геометрических построений от свойств реального мира, и о возможности свободного выбора геометрии для описания физического пространства.

Отсутствие связей между геометрией и физикой достаточно наглядно демонстрирует А. Пуанкаре [10] следующим примером:

«… если бы все тела Вселенной начали одновременно и в одинаковой пропорции расширяться, то у нас не было бы никаких средств заметить это, потому, что все наши измерительные инструменты увеличивались бы вместе с самими предметами, для измерения которых они служат. После этого расширения мир продолжал бы свой ход, и ничего не говорило бы нам, что произошло столь важное событие»

Данный пример приводится не Пуанкаре физиком, а Пуанкаре - чистым математиком, который, мысля математическими категориями, помнит, что между геометрическими фигурами нет никакой связи, а потому автоматически приписывает отсутствие связей между свойствами тел и телами, ими обладающими так же, как, например и у тел с метрическими инструментами. Что с изменением размеров базисной системы тел линейно изменяются и численные величины всех их свойств, которые, поэтому, не могут быть зафиксированы наукой. Что тела и свойства взаимно не связаны, а сами свойства независимы от тел и от пространства, в котором они образованы. Что геометрия не фиксирует никаких закономерностей между параметрами тел и взаимосвязями их свойств.

В этом утверждении (к нему мы еще вернемся), хотя оно как бы не имеет отношения к математике, явно выражен характер статической геометрии, отображающий только однозначные, формальные, обособленные свойства образуемой ее элементами (фигурами). А в реальном мире, в мире диалектики, обособленные а, следовательно, взаимно не связанные свойства отсутствуют.

Рассмотрим, так ли однозначны и обособлены эти элементы и их взаимосвязи в геометрии. И как проявляет себя в геометрии диалектика. Иными словами, рассмотрим диалектику элементов статической геометрии.

 

1.9. Диалектика элементов геометрии

 

Формулирование первичных понятий и аксиом в различных граничных условиях привели к образованию наряду с геометрией Евклида целого ряда статических неевклидовых метрических и неметрических геометрий. И что самое неожиданное: опорными элементами становления этих, подчастую, взаимно противоречивых, но логически корректных, не сводимых друг к другу геометрий, послужили самые простые, лишенные реального содержания, абстрактные понятия «точка», «прямая», «плоскость» и в некоторой степени «объем» (пространство). И эти понятия - элементы евклидовой геометрии - не изменяются при переходе от одной геометрии к другой. Учитывая основательность и первичность этих элементарных понятий, проанализируем диалектику их образования, взаимосвязи и структуру вытекающих из них аксиом.

Этот анализ важен потому, что аксиоматическое абстрагирование геометрических элементов до первичных взаимно независимых фигур и последующее «воссоздание» из этих же элементов, как бы отображающих реальные явления, «абсолютно верных» геометрий, создают иллюзию того, что …«положения математики покоятся не на реальных объектах, а исключительно на объектах нашего воображения».Иначе говоря: «Математическая геометрия является теорией логической структуры. Она совершенно независима от естественно научных исследований и имеет дело только с логическими следствиями из данной системы аксиом» [11]. И возникает вопросы: «Почему возможно такое превосходное соответствие математики с реальными предметами и явлениями, если сама она является только произведением человеческой мысли, не связанной ни с каким опытом? Может ли человеческий разум без всякого опыта, путем одного размышления понять свойства реальных вещей?» [11].

Эти вопросы Эйнштейна с классической прямотой демонстрируют значимость понятий, которые кажутся сами по себе априорно очевидными без всякой связи с природными объектами и структурами. Проследуем по цепочке этих очевидностей. Начнем с «точки».

Существует множество геометрических определений понятия «точка». Вот некоторые из них: точка - геометрический объект (?) лишенный протяженности. След линии, входящей в плоскость. Геометрически не пересекающаяся сингулярность линий. Вырожденное состояние кривой. Плоскость, площадь которой устремлена к нулю и т.д. Таким образом, точка - это геометрическая фигура, не имеющая измерений и, следовательно, не имеющая ни геометрических, ни физических качеств и являющая собой неопределенное и неподвижное место на какой-то геометрической фигуре, а подчастую и сама являясь фигурой. Абстракция, призванная заменить физическое представление об очень малых или несопоставимых с параметрами объектах, своеобразным математическим аналогом тел.

Но вот что существенно. Определение понятия абстракции «точка», как понятия статического, оказывается невозможным без привлечения, в явном или скрытом виде, некоторой операции движения. Отметим эту особенность и как проявление дуализма в определении понятия «точка», и как отображение характера совершаемого действия над определенным и явно не геометрическим предметом.

Линия - множество точек на плоскости, слившееся в длину и не имеющее ширины. След траектории движущейся точки. Объект, характеризуемый длиной, но лишенный ширины. Геометрическая фигура, обладающая только одним качеством - протяженностью. След пересечения двух плоскостей и т.д.

И в этих определениях неявно нарушается статичность геометрии, поскольку присутствует двойственность покоя и движения. Линия неподвижна, а для ее распознавания приходится предполагать некоторое движение, либо приводить в движение точку, которая в свою очередь может быть выражена через линию. Да и сама прямая есть кривая, радиус кривизны которой устремляется (опять же движется) в бесконечность.

Понятие «плоскость», если не считать определением такую тавтологию, как «плоскость - след линии, движущейся на плоскости», определяется, чуть ли не единственным образом: Плоскость есть след линии, движущейся параллельно самой себе. Тут уже для явного движения привлекается понятие, которое само по себе определяется через движение. То есть наличествует двойная двойственность.

Таким образом, основные как бы априорные статические понятия геометрии включают в себя противоречивые противоположные качества: с одной стороны, покоя, а с другой - движения.

Противоречивая двойственность в определении первичных элементарных понятий постоянно вызывала головную боль лучших математических умов, вынуждая их бороться с этой двойственностью различными способами: от снятия противоречий соглашениями по Пуанкаре [10]до отбрасывания их по Гильберту. Приведем четкую, абсолютно абстрактную, логически однозначную формулировку первичных понятий, данную Гильбертом: «Мы мыслим три различные системы вещей: вещи первой системы называем точками и обозначаем А, В, С; вещи второй системы мы называем прямыми и обозначаем a, b, c: вещи третьей системы мы называем плоскостями и обозначаем a, b, g…».

Эта формализация качественных понятий геометрии как вещей (т.е. как тел) - классическое творение свободного ума, отвергающего всякую связь первичных понятий с внешней реальностью. В ней присутствует логическая четкость и однозначная априорность математической абстракции, превращающая всякую форму геометрического движения в неподвижность, покой, статичность. Движение и самодвижение реальных тел как атрибут, присущий всей материи, отвергается, и постулируется возможность существования отдельного самостоятельного покоя тел, который и призвана описывать геометрия. Постулируемая статичность первичных понятий и вызывает появление статических геометрий, обусловливая возможность механического (внесистемного) взаимно независимого соединения элементов геометрии в различные статические фигуры.

Постулируя существование абстрактных неподвижных «вещей», Гильберт автоматически отбрасывает единство связанной двойственности, которая отображает диалектику покоя и движения. Убрав двойственность, он одной операцией лишает геометрию движения, а следовательно и диалектики. Это достаточно небрежное обращение с диалектикой, немедленно отражается на математике, обеспечивая неопределенность ее основанию, превращая все создаваемые геометрические структуры из динамических в статические (превратив не абстрагированием, а постулированием) и рикошетом поражает физику, обеспечив ей в качестве математической основы описания природных явлений заведомо односторонние, а, следовательно, и недвижимые геометрические построения.

В «абстрагированных» Гильбертом понятиях все связи и свойства геометрических элементов растеряны. Неизвестны свойства пространства и неизвестно, осталось ли оно вообще и в каких параметрах соотносится с образуемыми геометрическими фигурам. Отсутствуют даже намеки на движение (но это не мешает геометрам совершать движения в виде математического преобразования в отсутствующем пространстве), и потому последующая интеграция геометрических элементов в новые системы и фигуры может осуществляться любым мыслимым или немыслимым образом только на основе аксиоматики и логики, но не диалектики. Это соединение не может происходить без постулирования способов взаимосвязи геометрических элементов между собой, без «соглашений» использования элементов в применении к природным явлениям.

К тому же полная статичность (самонеподвижность) гильбертова пространства и фигур, находящихся в нем, запрещает последним, какое бы то ни было движение (перемещение) и самих фигур, и их элементов как относительно друг друга, так и относительно пространства. Последний запрет - движение относительно пространства − обусловлен его пустотой, и потому не может быть связей, создающих ориентацию фигур в пустом пространстве. Пространство Гильберта - бескачественное формально – логическое образование, в котором недопустимо образование фигур и которое не имеет отношения к геометрическому пространству и тем более к движению, поскольку в нем протяженность в трех направлениях связана аксиоматически. Можно сказать, что пространство в аксиоматизации Гильберта отсутствует, поскольку не имеет никакой связи с фигурами, заключенными в нем.

Возможность полного абстрагирования первичных элементов от реальных объектов с потерей движения и связей, простым постулированием, создает впечатление независимости, априорности геометрических элементов и математических аксиом. Последующее воссоздание некоей новой неевклидовой или иной геометрии из априорных понятий, как бы из ничего становится «теоретическим» подтверждением этой априорности. К тому же многообразие геометрий требует ответа на возникающие вопросы: Содержит ли статическая геометрия в качестве своего основания некое геометрическое пространство? Существует ли единое для всех геометрий пространство? Или каждая из геометрий «обладает» своим пространством? И если последнее верно, то в чем различие между свойствами этих пространств? И т.д.

Природа и в макрокосме, и в микрокосме имеет одну, единую геометрию, нам неизвестную. И мы как бы свободны в выборе первичных элементов геометрии, т.е. в переходе, например, от конкретных тел к абстракции-точке (однако, чаще бывает по другому, сначала определяют понятие «точка», а уж от нее «абстрагируются» к телу или другим фигурам), но абстрагируясь одним из способов, мы либо сохраняем, либо аннулируем двойственность. А с ликвидацией двойственности разрывается и связь эмпирики с содержанием понятий и аксиом. Создав термин-понятие, имеющий односторонний смысл, мы фиксируем чистую и вроде бы не зависящую от внешнего мира абстракцию, которая уже по этой причине противоречива. Отсутствие двойственных связей или движения в формулировке аксиом и понятий приводит к проявлению двойственного в структуре создаваемых геометрий (например, геометрии Лобачевского и Римана). И хотя аксиоматизация и законы логики способствуют созданию достаточно обоснованных и логически корректных комбинаций из первичных элементов, они не только не гарантируют корректность их взаимосвязи между собой, но и вызывают структурный антагонизм. В результате единая физическая геометрия отграничивается от физики и разделяется на взаимно противоречивые, не сводимые друг к другу геометрии.

И не случайно М. Клайн констатирует [3]: «Математики с досадой и огорчением обнаружили, что несколько различных геометрий (п/ж курсив наш – Авт.) одинаково хорошо согласуются с наблюдательными данными о структуре пространства. Но эти геометрии противоречили одна другой, - следовательно, все они не могли быть одновременно истинными».

Отметим: геометрии не противоречат и не могут противоречить одна другой. В природе отсутствуют противоречия между свойствами. Аксиомы же, постулаты и граничные условия взаимосвязи элементов геометрий противоречить друг другу могут. Они-то и обусловливают противоречивость и образованным, на их основе геометриям. Добавим, априорно истинность формулируемых аксиом, в понимании адекватности природе, выяснить логически не представляется возможным.

Трудно предположить, что в определениях, максимально абстрагированных от природных процессов, но не порывающих с ними, наличие двойственности случайно. Скорее наоборот. Первичным геометрическим понятиям, следствием обобщения многовекового измерительного опыта присуща двойственность как отображение реальности. И эта двойственность не прихоть логики, не игра воображения и даже не мыслительные издержки, а требование диалектического закона единства противоположностей, по которому покой неотделим от движения (это и есть основа возникновения двойственности). Покой и движение, - внутренние атрибуты всех тел и, следовательно, пространства. Усекновение покоя или движения, ликвидация двойственности в определениях первичных понятий равнозначна умерщвлению природы геометрии. Позже мы покажем, куда завело геометрию абстрактное, удобное для применения, свободное от двойственности порождение чистой математической мысли.

Заканчивая изложение раздела, отметим еще раз, что исходным основанием для математики являются не числа, не аксиомы и постулаты, и не понятия, а те качественные свойства реального вещественного пространства (природы), которые изучаются конкретными науками, в первую очередь физикой и обобщаются диалектической философией. К сожалению физики и математики, постигая природу, опирались на философию механицизма, совершенно игнорируя диалектику. Это способствовало разделению современной физики на множество взаимно обособленных разделов, каждый из которых занимается изучением отдельных совокупностей природных свойств, при отсутствии связи между этими совокупностями. И природа видится сквозь такую физику в виде лоскутного одеяла, разделенной на целый ряд самостоятельных направлений, а по-крупному на макро- и микро миры, имеющие свои законы, свои принципы построения, свою математику, и ничего такого, что бы объединяло их. Уже по причине отсутствия диалектики в современной математике и физике сложившееся физическое мировоззрение более чем сомнительно. И потому следует вкратце познакомиться с материальным миром, от которого абстрагируется математика [2].

 


 

Глава II

Динамические свойства геометрии

2.1. Тело и его свойства

Поскольку основой математики является материальный мир, то необходимо определиться с исходными понятиями этого мира и в первую очередь с понятиями «тело» и «материя». По современным представлениям внешний мир постулируется материальным, т.е. телесным, и его образует материя. Однако такое представление, по меньшей мере, односторонне, поскольку отрицает наличие мира духовного, мира, образованного Богом, а вместе с ним и телесность духовного мира. Тела вещественные, представляют собой субстанцию, сущность материи, существование которой определяется миром духовным. В настоящей работе рассматривается только тела материального мира.

Субстанция «тело» - важнейшее материальное понятие механики, да и всех естественных наук изучающих материальную природу. И, тем не менее, его понятийное значение оказывается наименее отработанным среди других основных понятий. Отсутствие однозначного толкования понятия «тело» и характеристики его свойств приводит к тому, что тело в естествознании постоянно отождествляют с понятиями «материя», «вещество», «энергия», «масса» и т.д. Т.е. и с субстанцией и со свойствами. Причем, свойство - «масса» в физике, повсеместно подменяет субстанцию «тело». Но если «тело» есть совокупность взаимосвязанных свойств, образующих в данной количественной пропорции определенный природный объект, то «масса» - рядовое свойство любого тела. И подмена субстанции «тело» на свойство «масса», с одной стороны, создает иллюзию естественного описания физических явлений, с другой, образует предпосылки некорректного понимания природных процессов. Поэтому основным для понимания данных процессов становится определение признака, отграничивающего субстанцию «тело» от свойств, его образующих. И такой признак существует - это размерность.

Отсюда тело - совокупность свойств, не имеющая размерности. Единственное «самостоятельное» (в смысле отграниченное от других) природное образование, тождественные аналоги которого в природе отсутствуют. Система, взаимодействующая своими свойствами со всеми окружающими телами и вещественным пространством. Безразмерностность и обусловливает телу свойства субстанции. И как субстанция тело есть целое.

Подчеркнем еще раз. Размерность есть главное отличие свойства от субстанции. А потому все физические параметры, имеющие размерность, являются свойствами и не обладают самостоятельностью от тел. Они - их атрибуты, взаимосвязанные составляющие определенного тела, которое зачастую мы даже не фиксируем как тело. Например, пространство окружающего нас космоса - свойство нашей Галактики, образованное четырьмя неравнозначными размерностными составляющими: «длиной», «шириной», «высотой», «глубиной». Иначе говоря: Галактика - тело. Она безразмерностна и по своему естественному положению в природе, будучи субстанцией, равнозначна всем телам (включая элементарные частицы) и Вселенной в целом. Таким же образом, и пространство, которое образует Солнечная система, тоже есть ее свойство. А свойство - "пространство" быть безразмерностным не может, следовательно, не существует пространства как самостоятельной субстанции, как некоего отдельного вместилища для материи (тел). И каждое тело образует свое пространство (объем).

Свойство - категория, характеризующая определенную, качественную сторону тела (объем, масса, сила, скорость... и т.д.), взаимосвязанная с другими свойствами того же тела, взаимодействующая с аналогичными свойствами других тел и имеющая размерность. Размерность может обозначаться отдельными элементами (например: г, с, см. ... и т.д.) или соотношениями качественных элементов (г/см, см/с...). Свойство, отображенное численной величиной, может называться параметром.








Дата добавления: 2016-05-11; просмотров: 442;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.022 сек.