Дифференциал первообразной

Первообразная. Неопределенный интеграл и его основные свойства

Основной задачей дифференциального исчисления является нахождение производной или дифференциала заданной функции.

Основной задачей интегрального исчисления является нахождение функции по заданной ее производной или дифференциалу.

 

Определение: Функция называется первообразной для данной функции, если ее производная равна данной функции.

 

Обозначение: .

Вопрос: Является ли функция х2 первообразной для функции 2х?

Ответ: Функция х2 является первообразной для функции 2х, так как .

 

Вопрос: Какая из двух функций 3х2 или х3 является первообразной для другой?

Ответ: Функция х3 является первообразной для функции 3х2, так как .

Функция 3х2 является производной от функции х3.

Вопрос: Какая из двух функций х5+7 или 5х4 является первообразной для другой?

Ответ: Функция х5+7 является первообразной для функции 5х4, так как . Функция 5х4 является производной от функции х5+7.

 

Упражнения:

Какая из двух функций является первообразной для другой?

1) ; 2) ; 3) ; 4) ; 5) .

Дифференциал первообразной

Пусть функция является первообразной для функции , то есть .

Воспользуемся определением дифференциала функции для вычисления дифференциала первообразной:

Дифференциалом функции называется произведение производной функции на дифференциал аргумента, то есть .

Вывод: Дифференциал первообразной для данной функции равен произведению данной функции на дифференциал аргумента.

Пример: Найти дифференциал первообразной для функции .

; ; .

Задача: Являются ли функции ; ; ; первообразными для функции ?

Воспользуемся определением первообразной: .

; ; ; .

Ответ: Данные функции являются первообразными для функции .

Вывод: Функция имеет бесконечное множество первообразных, отличающихся друг от друга на постоянную: , С – постоянная.

Теорема: Если функция является первообразной для функции на интервале , то множество всех первообразных для функции задается формулой , где С – постоянная.

Замечание: Операция нахождения всех первообразных для данной функции называется интегрированием этой функции. Интегрирование обозначается с помощью знака неопределенного интеграла .

 

Определение: Неопределенным интегралом от данной функции называется совокупность ее первообразных:

.

подынтегральная функция;

дифференциал аргумента х;

подынтегральное выражение;

С постоянная интегрирования.

первообразная для функции .

Пример:

  1. ;
  2. ;
  3. ;
  1. ;
  2. .

Замечание:

  1. Интеграл называется неопределенным, так как результат интегрирования не однозначен.
  2. Графики всех первообразных для функции получаются из любого из них параллельным переносом вдоль оси Оу.
  3. При нахождении для данной функции первообразной, удовлетворяющей начальным условиям, надо найти значение постоянной интегрирования.

 

 

Замечание:

  1. Дифференцирование (нахождение производной или дифференциала функции) и интегрирование являются взаимно обратными действиями.

 

Пример:

1) ; .

2) ; .

 

  1. Чтобы найти неопределенный интеграл от данной функции, нужно найти одну из ее первообразных и прибавить к ней произвольную постоянную.
  2. Для проверки правильности полученного результата необходимо помнить, что производная от результата интегрирования должна равняться подынтегральной функции.

 








Дата добавления: 2016-04-11; просмотров: 2355;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.