Теорема сложения вероятностей несовместных событий

Суммой А + В двух событий А и В называют событие, состоящее в появлении события А, или события В, или обоих этих событий. Например, если из орудия произведены два выстрела и А — попадание при первом выстреле, В — попадание при втором выстреле, то А + В —попадание при первом выстреле, или при вто­ром, или в обоих выстрелах.

В частности, если два события А и В — несовместные, А + В—событие, состоящее в появлении одного из этих событий, безразлично какого.

Суммой нескольких событий называют событие, которое состоит в появлении хотя бы одного из этих событий. Например, событие А + В + С состоит в появлении одного из следующих событий: А, В, С, А и В, А и С, В и С, А и В и С.

Пусть события А и В—несовместные, причем вероят­ности этих событий известны. Как найти вероятность того, что наступит либо событие А, либо событие В? Ответ на этот вопрос дает теорема сложения.

Теорема. Вероятность появления одного из двух несов­местных событий, безразлично какого, равна сумме веро­ятностей этих событий:

.

Доказательство. Введем обозначения: n—общее число возможных элементарных исходов испытания; — число исходов, благоприятствующих событию А; — число исходов, благоприятствующих событию В.

Число элементарных исходов, благоприятствующих наступлению либо события А, либо события В, равно . Следовательно,

.

Приняв во внимание, что и , окончательно получим

Следствие. Вероятность появления одного из не­скольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

.

Доказательство. Рассмотрим три события: А, В и С. Так как рассматриваемые события попарно несов­местны, то появление одного из трех событий, А, В и С, равносильно наступлению одного из двух событий, А+В и С, поэтому в силу указанной теоремы

.

Для произвольного числа попарно несовместных собы­тий доказательство проводится методом математической индукции.

Пример 1. В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара.

Решение. Появление цветного шара означает появление либо красного, либо синего шара.

Вероятность появления красного шара (событие А)

.

Вероятность появления синего шара (событие В)

.

События А и В несовместны (появление шара одного цвета исклю­чает появление шара другого цвета), поэтому теорема сложения при­менима.

Искомая вероятность

.

Пример 2. Стрелок стреляет по мишени, разделенной на 3 об­ласти. Вероятность попадания в первую область равна 0,45, во вторую — 0,35. Найти вероятность того, что стрелок при одном выстреле попадет либо в первую, либо во вторую область.

Решение. События А — «стрелок попал в первую область» и Я — «стрелок попал во вторую область» — несовместны (попадание в одну область исключает попадание в другую), поэтому теорема сложения применима.

Искомая вероятность

.

 








Дата добавления: 2016-03-27; просмотров: 1303;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.