Истоки вейвлет-преобразования
История спектрального анализа восходит к И. Бернулли, Эйлеру и Фурье, ко-
торый впервые построил теорию разложения функций в тригонометрические ряды. Однако это разложение долгое время применялось как математический прием и не связывалось с какими-либо физическими понятиями. Спектральные представления применялись и развивались сравнительно узким кругом физиков–теоретиков. Однако, начиная с 20-х годов прошлого века, в связи с бурным развитием радиотехники и акустики, спектральные разложения приобрели физический смысл и практическое применение. Основным средством анализа реальных физических процессов стал гармонический анализ, а математической основой анализа - преобразование Фурье. Преобразование Фурье разлагает произвольный процесс на элементарные гармонические колебания с различными частотами, а все необходимые свойства и формулы выражаются с помощью одной базисной функции exp(jωt) или двух действительных функций sin(ωt) и cos(ωt). Гармонические колебания имеют широкое распространение в природе, и поэтому смысл преобразования Фурье интуитивно понятен независимо от математической аналитики. Преобразование Фурье обладает рядом замечательных свойств. Областью определения преобразования является пространство L2 интегрируемых с квадратом функций, и многие физические процессы в природе можно считать функциями, принадлежащими этому пространству. Для применения преобразования разработаны эффективные вычислительные процедуры типа быстрого преобразования Фурье (БПФ). Эти процедуры входят в состав всех пакетов прикладных математических программ и реализованы аппаратно в процессорах обработки сигналов. Было также установлено, что функции можно разложить не только по синусам и косинусам, но и по другим ортогональным базисным системам, например, полиномам Лежандра и Чебышева, функциям Лагерра и Эрмита. Однако практическое применение они получили только в последние десятилетия ХХ века благодаря развитию вычислительной техники и методов синтеза цифровых линейных систем обработки данных. Непосредственно для целей спектрального анализа подобные ортогональные функции не нашли широкого применения из-за трудностей интерпретации получаемых результатов. По тем же причинам не получили развития в спектральном анализе функции типа "прямоугольной волны" Уолша, Радемахера, и пр. Теоретические исследования базисных систем привели к созданию теории обобщенного спектрального анализа, которая позволила оценить пределы практического применения спектрального анализа Фурье, создала методы и критерии синтеза
ортогональных базисных систем. Иллюстрацией этому является активно развивающаяся с начала 80-х годов прошлого столетия теория базисных функций типа вейвлет. Благодаря прозрачности физической интерпретации результатов анализа, сходной с "частотным" подходом в преобразовании Фурье, ортогональный базис вейвлетов стал популярным и эффективным средством анализа сигналов и изображений в акустике, сейсмике, медицине и других областях науки и техники. Вейвлет-анализ является разновидностью спектрального анализа, в котором роль простых колебаний играют функции особого рода, называемые вейвлетами. Базисная функция вейвлет – это некоторое "короткое" колебание, но не только. Понятие частоты спектрального анализа здесь заменено масштабом, и, чтобы перекрыть "короткими волнами" всю временную ось, введен сдвиг функций во времени. Базис
вейвлетов – это функции типа , где b - сдвиг, а – масштаб. Функция должна иметь нулевую площадь и, еще лучше, равными нулю первый, второй и прочие моменты. Фурье-преобразование таких функций равно нулю при ω=0 и имеет вид полосового фильтра. При различных значениях масштабного параметра 'a' это будет набор полосовых фильтров. Семейства вейвлетов во временной или частотной области используются для представления сигналов и функций в виде суперпозиций
вейвлетов на разных масштабных уровнях декомпозиции (разложения) сигналов.
Рисунок 3.1 – Вейвлет Хаара
Первое упоминание о подобных функциях (которые вейвлетами не называ-
лись) появилось в работах Хаара (Haar) еще в начале прошлого века. Вейвлет Хаара - это короткое прямоугольное колебание на интервале [0,1], показанное на рис. 3.1.
Однако он интересен больше теоретически, так как не является непрерывно дифференцируемой функцией и имеет длинные "хвосты" в частотной области. В 30-е годы физик Paul Levy, исследуя броуновское движение, обнаружил, что базис Хаара лучше, чем базис Фурье, подходит для изучения деталей броуновского движения. В настоящее время специальные пакеты расширений по вейвлетам присутствуют в основных системах компьютерной математики (Matlab, Mathematica, Mathcad, и др.), а вейвлет-преобразования и вейвлетный анализ используются во многих областях науки и техники для самых различных задач. Многие исследователи называют вейвлет-анализ "математическим микроскопом" для точного изучения внутреннего состава и структур неоднородных сигналов и функций. Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии решения любых задач. Возможности вейвлетов еще не раскрыты полностью, однако это не означает, что их развитие приведет к полной замене традиционных средств обработки и анализа информации, хорошо отработанных и проверенных временем. Вейвлеты позволяют расширить
инструментальную базу информационных технологий обработки данных.
Дата добавления: 2016-02-20; просмотров: 836;