Момент силы относительно центра (точки). Теорема Вариньона

2.1.1 Момент силы относительно центра.

Моментом силы относительно центра(точки) Оназывается вектор равный векторному произведению радиуса вектора , проведенного из центра О в точку А приложения силы, и вектора силы :

Вектор приложен в точке О инаправлен ^ плоскости, проходящей через центр О и силу , в ту сторону, откуда сила видна стремящейся повернуть тело вокруг центра О против хода часовой стрелки.

Модуль равен произведению модуля силы на плечо h: = F·h,

где плечо h - перпендикуляр, опущенный из центра О на линию действия силы .

Момент характеризует вращательный эффектсилы относительно центра (точки) О.

Свойства момента силы:

Момент силы относительно центра не изменяется при переносе силы вдоль линии ее действия в любую точку;

Еслилиния действия силы проходит через центр О (h = 0), то момент силы относительно центра О равен нулю.

Для плоской системы сил при вычислении моментов сил относительно точки (центра), находящейся в той же плоскости, пользуются понятием алгебраического момента силы относительно точки.

Алгебраический момент силы относительно точки О равен взятому с соответствующим знаком произведению модуля силы на ее плечо:

mО( ) = ±F×h.

Момент считается положительным, если сила стремится повернуть тело вокруг точки О против хода часовой стрелки, и отрицательным - по ходу часовой стрелки:

Теорема Вариньона.

При определении алгебраического момента силы относительно точки в случае, когда сложно найти плечо h, следует разложить силу на составляющие, плечи которых найти проще, (часто параллельно осям координат), и применить теорему Вариньона: если данная система сил имеет равнодействующую, то момент равнодействующей относительно любой точки О равен сумме моментов составляющих сил, относительно той же точки, т. е.

Например: , но плечо h сложно найти. Разложим силу на составляющие и , применим теорему Вариньона.









Дата добавления: 2016-01-29; просмотров: 716; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2020 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.