Пересечение призмы с плоскостью
При построении линии пересечения призмы с плоскостью определяют точки пересечения ее ребер с данной плоскостью. Эту линию можно также построить, определяя линии пересечения отдельных граней призмы с плоскостью. В результате пересечения поверхности призмы плоскостью может быть получен прямоугольник (рис.6.2а ), если эта плоскость параллельна боковым рёбрам призмы, или различного вида многугольники (рис.6.2 б,в.), если плоскость не па параллельна им
|
На рис 6.3 показано построение проекций линии сечения
треугольной призмы фронтально-проецирующей плоскостью a
В сечении получен четырёхугольник ABCD, фронтальная проекция которого совпадает с фронтальной проекцией av секущей плоскости. Точки А,В являются точками пересечения боковых рёбер призмы с плоскостью a, а отрезок CD - линия пересечения верхнего основания призмы с этой плоскостью.
Натуральный вид сечения Ао Во Со Do построен способом замены плоскостей проекций, для этого введена новая плоскость проекций,


параллельная плоскости о, и на эту плоскость спроецированы точкиA,B,C,D. Из проекций А², В", С² D² проведены линии связи, перпендикулярные к следу av, и на свободном поле чертежа проведена линия Ао Do, параллельная av. Эта линия принята за базу отсчёта размеров у на фигуре сечения потому, что прямая AD принадлежит фронтальной плоскости задней грани призмы, которую принимают за базовую. Точки Во и Со построены с помощью размеров ув и ус.
Дата добавления: 2016-01-11; просмотров: 1084;
