Алгоритм решения задач на пересечение поверхностей

Пересечением поверхностей называется кривая, точки которой принадлежат одновременно обеим поверхностям.

В начертательной геометрии линию пересечения двух поверхностей находят с помощью приема, которым называется способом вспомогательных секущих поверхностей.

Этот способ заключается в следующем,

Пусть надо построить линию пересечения двух поверхностей Ф1 и Ф2. Выбирается третья поверхность Ф. Затем находится линия пересечения поверхностей Ф и Ф1, Ф и Ф2. Вид и расположение поверхности Ф относительно данных поверхностей должны быть выбраны так, чтобы в пересечении получились простые по форме линии (прямая или окружность), чтобы проекции этих линий было легко построить. Последовательность действий можно представить алгоритмом:

1)Выбор вспомогательной секущей поверхности Ф;

2)ФÇФ1= m1, ФÇФ2 = m2;

3)m1Çm2 = M, m1Çm2 = N...

Полученные точки М, N и т.д. принадлежат обеим поверхностям одновременно, следовательно, принадлежат искомой линии пересечения.

 

9.2. Метод секущих плоскостей

При построении линии пересечения двух поверхностей методом секущих плоскостей в качестве вспомогательной секу-щей поверхности выбирается плоскость. Вспомогательная плоскость выбирается таким образом, чтобы она пересекала данные поверхности по прямым или окружностям. Алгоритм в этом случае будет следующим:

Рис.9.2.
1) Выбор вспомогательной плоскости a;

2) Находим линии пересечения Ф1Ça =m1, Ф2Ça=m2;

3) m1Çm2 = A, m1Çm2 = В, … и т. д. (Рис.9.2.)

Применение метода секущих плоскостей при

Решении задач

На рис.9.3. даны конус и полусфера.

В данном случае в качестве вспомогательных секущих плоскостей необходимо выбрать плоскости, параллельные горизонтальной плоскости проекций, так как такие плоскости пересекают конус и полусферу по окружностям.

Рис.9.3.
Чтобы начать построение линии пересечения необходимо начать построение линии пере-сечения необходимо найти опор-ные точки: самую высокую и самую низкую в данном случае. В других случаях это может быть самая левая или самая правая точки. Пересечем обе поверхности плоскостью b½½V и проходящей через оси вращения поверхностей. В результате получим линии пересечения, которые являются фронтальными очерками данных поверхностей. Точка пересечения очерков 1 является точкой, принадлежащей линии пересечения.

Так как основания обеих поверхностей лежат в одной плоскости, то точки пересечения окружностей 2 и 3 также являются общими точками для данных поверхностей.

Точки 1,2,3 являются опорными, точка 1 - самая высокая, точки 2, 3- самые низкие. Теперь обе поверхности пересечем плоскостью a, расположенной ниже точки 1 и выше точек 2 и 3. Эта плоскость a пересечет обе поверхности по окружностям n2 и m2 найдем точки пересечения полученных окружностей n2Çm2 = 4, :n2 Ç m2 = 5.

Точки 4,5 принадлежат линии пересечения конуса и полусферы. Повторив это действие, необходимое число раз, построим линию пересечения данных поверхностей.








Дата добавления: 2016-01-20; просмотров: 9305;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.