Методы Рунге–Кутта.

Точность явных одношаговых методов численного решения систем обыкновенных дифференциальных уравнений вида

можно повысить, сохраняя в разложении функции в ряд Тейлора большее число членов. Например, метод второго порядка имеет следующую разностную схему:

,

или

где

.

Основное неудобство такой формы разностной схемы – необходимость вычисления частных производных , . Эта трудность значительно возрастает при построении методов более высокого порядка точности.

В методах Рунге–Кутта функции , где – порядок точности метода, заменяются на некоторые удобно вычисляемые функции таким образом, что

,

где – константа, не зависящая от .

В методе Рунге–Кутта второго порядка функция имеет вид

.

Разложим функцию в ряд Тейлора в окрестности точки :

.

Подставим это разложение в выражение для :

Сравнивая и , нетрудно видеть, что при

эти формы совпадают с точностью до члена .

Если положить , то , . В результате метод Рунге–Кутта второго порядка примет вид:

,

где

По аналогии можно построить методы Рунге–Кутта более высоких порядков. Не останавливаясь на выводе, приведем популярный на практике метод Рунге–Кутта четвертого порядка:

,

где

На каждом шаге интегрирования в методе Рунге–Кутта четвертого порядка приходится четырежды вычислять значение функции при разных значениях аргументов. Более того, эти значения функции используются лишь однократно, что отражается на эффективности вычислений.

Методы Рунге–Кутта относятся к классу явных условно устойчивых методов. По этой причине они оказываются неприемлемыми для решения жестких систем обыкновенных дифференциальных уравнений.








Дата добавления: 2015-11-24; просмотров: 650;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.