Критерий совместности Кронекера-Капелли
Система линейных уравнений имеет вид:
(5.1)
Здесь и ‑ заданные, а ‑ неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:
AX =B, (5.2)
где - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X= (x1, x2,..., xn)T, B = (b1, b2,..., bm)T - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.
Упорядоченная совокупность n вещественных чисел (c1, c2,..., cn) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2,..., xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2,..., cn)T такой, что AC º B.
Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.
Матрица
,
образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.
Вопрос о совместности системы (5.1) решается следующей теоремой.
Теорема Кронекера-Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и совпадают, т.е. .
Для множества М решений системы (5.1) имеются три возможности:
1) M = Æ (в этом случае система несовместна);
2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной);
3) M состоит более чем из одного элемента (тогда система называется неопределенной). В третьем случае система (5.1) имеет бесчисленное множество решений.
Система имеет единственное решение только в том случае, когда
. При этом число уравнений - не меньше числа неизвестных ; если , то уравнений являются следствиями остальных. Если , то система является неопределенной.
Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:
(5.3)
Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера; 3) матричным методом.
Пример 2.12. Исследовать систему уравнений и решить ее, если она совместна:
Решение. Выписываем расширенную матрицу системы:
.
Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу ; содержащие его миноры третьего порядка равны нулю:
, .
Следовательно, ранг основной матрицы системы равен 2, т.е. . Для вычисления ранга расширенной матрицы `рассмотрим окаймляющий минор
,
значит, ранг расширенной матрицы . Поскольку , то система несовместна.
Метод Гаусса
Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.
Пример 2.13. Решить систему уравнений методом Гаусса:
Решение. Выпишем расширенную матрицу данной системы
и произведем следующие элементарные преобразования над ее строками:
а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:
;
б) третью строку умножим на (-5) и прибавим к ней вторую:
.
В результате всех этих преобразований данная система приводится к треугольному виду:
Из последнего уравнения находим . Подставляя это значение во второе уравнение, имеем . Далее из первого уравнения получим .
Формулы Крамера
Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А
и n вспомогательных определителей , которые получаются из определителя D заменой i-го столбца столбцом свободных членов.
Формулы Крамера имеют вид:
. (5.4)
Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:
.
Если главный определитель системы D и все вспомогательные определители , то система имеет бесчисленное множество решений. Если главный определитель системы , а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.
Пример 2.14. Решить методом Крамера систему уравнений:
Решение. Главный определитель этой системы
,
значит, система имеет единственное решение. Вычислим вспомогательные определители , получающиеся из определителя D путем замены в нем столбца, состоящего из коэффициентов при xi, столбцом из свободных членов:
, ,
, .
Отсюда , , , , решение системы ‑ вектор .
Матричный метод
Если матрица А системы линейных уравнений невырожденная, т.е. , то матрица А имеет обратную, и решение системы (5.3) совпадает с вектором C = A-1B. Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X=C, C=A-1B называют матричным способом решения системы, или решением по методу обратной матрицы.
Пример 2.15. Решить матричным способом систему уравнений
Решение. Обозначим
;
Тогда данная система уравнений запишется матричным уравнением AX=B. Поскольку , то матрица A невырождена и поэтому имеет обратную:
.
Для получения решения X мы должны умножить вектор-столбец B слева на матрицу A: X = A-1B. В данном случае
и, следовательно,
.
Выполняя действия над матрицами, получим:
,
,
.
Итак, .
Дата добавления: 2015-12-22; просмотров: 1113;