Переменных

 

Введем новый тип экстремумов. Для этого рассмотрим целевую функцию , для которой x и y будем считать связанными функциональной зависимостью j(x, y) = 0.

 
 

Геометрический смысл такой ситуации по казан на рис. 22.1, из которого ясно, что в этом случае можно рассматривать новый тип экстремальной задачи: найти точку ( ), лежащую на кривой j (x, y) = 0, в которой функция принимает максимальное (минимальное) значение. Такого рода экстремумы называют условными экстремумами.

Если уравнение j (x, y) = 0 разрешить относительно y, то поиск условного сведется к поиску обычного экстремума для функции . Однако такая процедура часто бывает нерациональной или невозможной. Поэтому для поиска условных экстремумов был разработан специальный алгоритм – метод множителей Лагранжа, который мы сейчас рассмотрим.

Продифференцируем как сложную функцию, помня, что :

Отсюда с помощью необходимого условия экстремума получаем

(4.22.1)

С другой стороны, х и у связаны функциональной зависимостью , с помощью которой находим

(4.22.2)

Сравнивая производные (4.22.1) и (4.22.2), получаем равенство

равносильное системе двух уравнений

(4.22.3)

относительно неизвестных х, у, l.

Введем так называемую функцию Лагранжа:

F(x, y, l)=f (x, y)+lj (x, y). (4.22.4)

Тогда необходимые условия экстремума для (4.22.4)

 

 
 

приводят нас к уравнениям (4.22.3) и условию j (х, у) = 0. Решая эти три уравнения, мы найдем точку условного экстремума.

Таким образом, с помощью функции Лагранжа задача о поиске условного экстремума сводится к задаче о локальных экстремумах для функции Лагранжа.

Для общего случая, когда z = f ,

функция Лагранжа строится по аналогии с (4.22.4):

П р и м е р

Найти кратчайшее расстояние от начала координат до кривой .

Целевая функция здесь имеет вид . Составляем функцию Лагранжа

,

а затем записываем необходимые условия локального экстре­мума:

(4.22.5)

Используя первые два уравнения системы (4.22.5), находим

.

Подставляем это выражение в последнее уравнение системы (4.22.5)

Интерпретация полученных результатов ясна из рис. 4.22.2: в первой точке целевая функция достигает максимума, а во второй – миниму­ма, причем

;

Достаточные условия условного экстремума используются очень редко и в нашем курсе не рассматриваются.

Задание для самостоятельного решения

1. Найти экстремумы функции z = x3при условии

2. Найти экстремумы функции z = xy при условии 2х+3у=1.








Дата добавления: 2015-10-19; просмотров: 722;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.