Следствие. Остаток от деления многочлена на равен .
Многочлены первой степени называются линейными многочленами. Теорема Безу показывает, что разыскание корней многочлена равносильно разысканию его линейных делителей со старшим коэффициентом 1.
Многочлен можно разделить на линейный многочлен с помощью алгоритма деления с остатком, но существует более удобный способ деления, известный под названием схемы Горнера.
Пусть и пусть ,где . Сравнивая коэффициенты при одинаковых степенях неизвестной с левой и правой частях последнего равенства, имеем:
, откуда | (11.1) |
Число называется корнем кратности многочлена , если делит , но уже не делит .
Чтобы поверить, будет ли число корнем многочлена и какой кратности, можно воспользоваться схемой Горнера. Сначала делится на затем, если остаток равен нулю, полученное частное делится на и т.д. до получения не нулевого остатка.
Число различных корней многочлена не превосходит его степени.
Большое значение имеет следующая основная теорема.
Основная теорема. Всякий многочлен с числовыми коэффициентами ненулевой степени имеет хотя бы один корень (может быть комплексный).
Следствие. Всякий многочлен степени имеет в C (множестве комплексный чисел) столько корней, какова его степень, считая каждый корень столько раз, какова его кратность.
(11.2) |
где ‑ корни , т.е. во множестве C всякий многочлен разлагается в произведение линейных множителей. Если одинаковые множители собрать вместе, то:
,
где уже различные корни , ‑ кратность корня .
Если многочлен , , с действительными коэффициентами имеет корень , то число также корень
Значит, у многочлена с действительными коэффициентами комплексные корни входят парами.
Дата добавления: 2015-10-09; просмотров: 755;