Собственные значения и собственные вектора матриц

Число называется собственным значением (или характеристическим числом) квадратной матрицы порядка , если можно подобрать такой –мерный ненулевой вектор , что .

Для того, чтобы найти собственные значения матрицы , рассмотрим матрицу:

Если раскрыть определитель матрицы , то получится многочлен –й степени:

Этот многочлен называется характеристическим многочленом матрицы . Его коэффициенты зависят от элементов матрицы . Понятие многочлена будет подробно разобрано в следующем разделе.

Следует отметить, что , . Уравнение называется характеристическим уравнением матрицы .

Теорема. Множество всех собственных значений матрицы совпадает с множеством всех решений характеристического уравнения матрицы .

Доказательство:

,

ненулевой набор чисел, – вырожденная матрица – решение уравнения:

.

Собственным вектором квадратной матрицы порядка , принадлежащим ее собственному значению называется -мерный вектор , для которого .

Множество всех собственных векторов матрицы , принадлежащих ее собственному значению , обозначим через . Отыскание собственных векторов сводится к решению однородной системы линейных уравнений.

Теорема. Множество всех собственных векторов матрицы порядка , принадлежащих ее собственному значению , совпадает с множеством всех решений однородной системы линейных уравнений , где .

Доказательство:

В развернутом виде равенство записывается как система уравнений:

Если зафиксировано число , то задача нахождения собственного вектора матрицы сводится к поиску ненулевого решения системы линейных однородных уравнений с неизвестными , которые являются координатами вектора . Эта система имеет ненулевое решение только тогда, когда выполняется условие:

,

т.е. число является собственным числом матрицы .

Знание всех собственных векторов матрицы позволяет решить задачу диагонализации этой матрицы, то есть нахождения треугольной или диагональной матрицы, имеющий такие же собственные значения.

Теорема. Предположим, что квадратная матрица -го порядка имеет линейно независимых собственных векторов. Тогда если взять эти векторы в качестве столбцов матрицы , то матрица будет диагональной матрицей, у которой на диагонали стоят собственные значения матрицы , т.е.:








Дата добавления: 2015-10-09; просмотров: 777;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.