Теорема. Матрица является ортогональной тогда и только тогда, когда .

В соответствии с этой теоремой , и преобразование эквивалентно преобразованию

При определении характеристических чисел матрицы было введено новое понятие характеристического многочлена. Подробный анализ понятия многочлена приводится в следующем разделе.

Контрольные вопросы к лекции №10

1. Переход к новому базису и понятие матрицы перехода.

2. Понятие линейного оператора.

3. Собственные значения и собственные вектора матрицы.

4. Операция диагонализации матрицы и понятие ортогональной матрицы.









Дата добавления: 2015-10-09; просмотров: 655;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.