Уравнение прямой в отрезках

Общее уравнение прямой

Рассмотрим уравнение первой степени с двумя переменными в общем виде: ах + bу + с = 0, в котором коэффициенты a и b не равны одновременно нулю, т.е. a2 + b2 ≠ 0.

Пусть b ≠ 0. Тогда уравнение ах + bу + с = 0 можно записать в виде
у = (-а/b)х – с/b, т.е. получено уравнение прямой с угловым коэффициентом
k = -а/b. При этом если a ≠ 0, а с = 0, то у = kx, т.е. получено уравнение прямой, проходящей через начало координат. Если a = 0, а с ≠ 0, то
у = – с/b = const, т.е. получено уравнение прямой, параллельной оси абсцисс. Если a = с = 0, то у = 0 (уравнение оси абсцисс).

Пусть b = 0. Тогда уравнение ах + bу + с = 0 примет вид х = -с/а. Если с ≠ 0, то получим уравнение прямой, параллельной оси ординат, а если с = 0, то саму ось ординат (х = 0).

Таким образом, во всех рассмотренных случаях уравнение ах + bу +
+ с = 0 есть уравнение прямой линии на плоскости. Его называют общим уравнением прямой.








Дата добавления: 2015-10-06; просмотров: 788;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.